Atlantic BiogeoChemical fluxes (ABC)
Lead Research Organisation:
NATIONAL OCEANOGRAPHY CENTRE
Department Name: Science and Technology
Abstract
The North Atlantic Ocean plays a pivotal role in the global carbon cycle, by storing carbon released into the atmosphere when fossil fuels are burned, and by supporting the sinking flux of organic matter. Our understanding of how horizontal oceanic fluxes in the subtropics contribute to these processes is largely based on shipboard expeditions which occur every 5 years at 24N. Sampling at that interval is insufficient to resolve and understand the role that horizontal transfers play in regulating these processes. Detailed time-series of physical properties at 26.5N from moored instruments suggest that variability in these fluxes will be occurring on a range of timescales. Once this variability is measured, it is almost inevitable that we will modify our understanding of the role the North Atlantic subtropical gyre plays in the global carbon cycle. In this proposal we will address these issues by deploying new chemical sensors and samplers across the Atlantic at 26.5N. We will use the data they provide to calculate time-series of fluxes of nutrient and inorganic carbon, including carbon released to the atmosphere by mans activities, across 26.5N. We will adopt a hierarchical approach, successively using existing observations, then new oxygen observations and ultimately direct observations of the carbon and nutrients in order to identify the added value each successive stage of our programme provides. We will interpret our direct flux calculations as contributions to the North Atlantic budget in conjunction with other observations and models, to assess how oceanic fluxes control the strength and variability of the role the North Atlantic plays in the global carbon cycle.
Planned Impact
Atlantic Biogeochemical Cycles (ABC) is an ambitious multi-institute programme addressing the variability in biogeochemical fluxes at 26.5N. ABC uses new measurements, including from biogeochemical sensors added to the 26.5N moored array, extra samples in the Florida Strait, and from new deep and bio-Argo floats. It will focus on a) understanding the variability of the transport, b) understanding what controls it and c) establishing the impact of the variability on the budgets of the subtropical gyre. This extends work undertaken in RAGNARoCC, the ocean component of the NERC Greenhouse Gases programme.
The major beneficiaries of this information will be policy makers. The Climate Change Act mandates the UK to cut its emissions of six greenhouse gases by 80% in order to stabilize atmospheric CO2 levels at 550 ppm by 2050. We suspect strongly that the natural carbon sink in the North Atlantic may be declining; a major goal of this work is to establish whether this is in fact occurring by focussing on variability in the flux of anthropogenic carbon at the Southern Boundary of the North Atlantic Subtropical Gyre. Project outcomes will thus have a direct bearing on efforts to assess the efficacy of the current UK emissions policy, and is therefore of prime interest to two government departments.
Climate change and its impacts on environmental systems is also of considerable interest to the general public, the media, and to educators from primary school to university level. Our observations of where anthropogenic CO2 is presently stored and of how fast it is transported within the oceans are relevant to these issues and we expect widespread interest in our results.
Our plan for ensuring that our results are made available to these beneficiaries, in a form that is suitable for their use is provided in our Pathways to Impact plan.
The major beneficiaries of this information will be policy makers. The Climate Change Act mandates the UK to cut its emissions of six greenhouse gases by 80% in order to stabilize atmospheric CO2 levels at 550 ppm by 2050. We suspect strongly that the natural carbon sink in the North Atlantic may be declining; a major goal of this work is to establish whether this is in fact occurring by focussing on variability in the flux of anthropogenic carbon at the Southern Boundary of the North Atlantic Subtropical Gyre. Project outcomes will thus have a direct bearing on efforts to assess the efficacy of the current UK emissions policy, and is therefore of prime interest to two government departments.
Climate change and its impacts on environmental systems is also of considerable interest to the general public, the media, and to educators from primary school to university level. Our observations of where anthropogenic CO2 is presently stored and of how fast it is transported within the oceans are relevant to these issues and we expect widespread interest in our results.
Our plan for ensuring that our results are made available to these beneficiaries, in a form that is suitable for their use is provided in our Pathways to Impact plan.
Publications
Frajka-Williams E
(2019)
Atlantic Meridional Overturning Circulation: Observed Transport and Variability
in Frontiers in Marine Science
Caínzos V
(2022)
Thirty Years of GOSHIP and WOCE Data: Atlantic Overturning of Mass, Heat, and Freshwater Transport
in Geophysical Research Letters
Davila X
(2022)
How Is the Ocean Anthropogenic Carbon Reservoir Filled?
in Global Biogeochemical Cycles
Lebehot A
(2019)
Reconciling Observation and Model Trends in North Atlantic Surface CO 2
in Global Biogeochemical Cycles
Carracedo L
(2021)
Counteracting Contributions of the Upper and Lower Meridional Overturning Limbs to the North Atlantic Nutrient Budgets: Enhanced Imbalance in 2010
in Global Biogeochemical Cycles
Bryden H
(2020)
Reduction in Ocean Heat Transport at 26°N since 2008 Cools the Eastern Subpolar Gyre of the North Atlantic Ocean
in Journal of Climate
Weijer W
(2019)
Stability of the Atlantic Meridional Overturning Circulation: A Review and Synthesis
in Journal of Geophysical Research: Oceans
Turner C
(2022)
Decomposing oceanic temperature and salinity change using ocean carbon change
in Ocean Science
Hernández-Guerra A
(2019)
The upper, deep, abyssal and overturning circulation in the Atlantic Ocean at 30°S in 2003 and 2011
in Progress in Oceanography
McCarthy G
(2020)
Sustainable Observations of the AMOC: Methodology and Technology
in Reviews of Geophysics
Davila X
(2022)
Old and cold contributions to the oxygen minimum zones