Wider Impacts of Subpolar nortH atlantic decadal variaBility on the OceaN and atmospherE' (WISHBONE)
Lead Research Organisation:
NATIONAL OCEANOGRAPHY CENTRE
Department Name: Science and Technology
Abstract
The Subpolar North Atlantic (SNA), which is the region of the Atlantic Ocean between 45-65N latitude, is a highly variable region. Surface temperatures and surface salinity here have varied on a range of time-scales, but the changes are dominated by large and slow changes on decadal or longer timescales. This decadal timescale variability appears to form a key component of a larger climate mode, the Atlantic Multidecadal Variability, which has been linked to a broad range of important climate impacts, including rainfall in the North African and south Asian monsoons, floods and droughts over Europe and North America, and the number of hurricanes. The SNA is also one of the most predictable places on Earth at decadal timescales, which suggests the potential for improved predictions of regional climate and high-impact weather years ahead.
However, the origins of this variability in the SNA, and the processes controlling its impacts, are far from fully understood. There is significant evidence to suggest that anomalous heat loss from the subpolar North Atlantic Ocean to the atmosphere can instigate a cascade of changes across the North Atlantic basin in both the ocean and atmosphere. For example, changes in the SNA can change the strength of the ocean circulation to the south, affect the northward transport of heat and freshwater in the North Atlantic, and subsequently affect the upper ocean temperatures and salinity across the whole North Atlantic basin, and into the Arctic. Changes in the subpolar North Atlantic surface temperature are also thought to affect the atmospheric circulation - i.e. wind patterns - in both summer and winter. However, observational records are very short, and so there are significant problems with understanding causality, and considerable uncertainty about how well many of the important processes are represented in current climate models.
WISHBONE will make use of new advanced climate simulations and forecast systems to make progress in understanding the impact of the subpolar North Atlantic on the wider North Atlantic basin. It will also test specific hypotheses related to understanding the specific role of heat loss over the subpolar North Atlantic in driving changes throughout the basin including the role of surface anomalies in driving wind patterns.
WISHBONE is a collaboration between the National Centre for Atmospheric Science at the University of Reading, The National Oceanography Centre Southampton, The University of Oxford, and The University of Southampton from the U.K., and The National Center for Atmospheric Research, from the U.S.
However, the origins of this variability in the SNA, and the processes controlling its impacts, are far from fully understood. There is significant evidence to suggest that anomalous heat loss from the subpolar North Atlantic Ocean to the atmosphere can instigate a cascade of changes across the North Atlantic basin in both the ocean and atmosphere. For example, changes in the SNA can change the strength of the ocean circulation to the south, affect the northward transport of heat and freshwater in the North Atlantic, and subsequently affect the upper ocean temperatures and salinity across the whole North Atlantic basin, and into the Arctic. Changes in the subpolar North Atlantic surface temperature are also thought to affect the atmospheric circulation - i.e. wind patterns - in both summer and winter. However, observational records are very short, and so there are significant problems with understanding causality, and considerable uncertainty about how well many of the important processes are represented in current climate models.
WISHBONE will make use of new advanced climate simulations and forecast systems to make progress in understanding the impact of the subpolar North Atlantic on the wider North Atlantic basin. It will also test specific hypotheses related to understanding the specific role of heat loss over the subpolar North Atlantic in driving changes throughout the basin including the role of surface anomalies in driving wind patterns.
WISHBONE is a collaboration between the National Centre for Atmospheric Science at the University of Reading, The National Oceanography Centre Southampton, The University of Oxford, and The University of Southampton from the U.K., and The National Center for Atmospheric Research, from the U.S.
Planned Impact
Changes in the Subpolar North Atlantic (SNA) are a significant driver of decadal changes in weather and climate across large regions of the globe, including floods and droughts over the UK/Europe, the number of hurricanes, rainfall over South Asian monsoon regions. As the magnitude of anthropogenic climate change grows, the importance of the SNA for shaping regional climate change is likely to grow - for example if there is a significant slowdown in the Atlantic Meridional Overturning Circulation (AMOC), as has been anticipated.
It follows that improved understanding of changes in the SNA and the impacts of these changes on the wider climate system is essential to improve assessments of current and future risks arising from high impact weather and climate events. Such risk assessments are in urgent demand both from governments - for example the UK government's 5-yearly Climate Change Risk Assessments (CCRA) - and increasingly from businesses in a wide range of sectors (including insurance, Energy, Fisheries and agriculture). For example, the international Task Force on Climate Related Financial Disclosures (https://www.fsb-tcfd.org/) recently issued an urgent call for a step change in the capacity of businesses to quantify their physical and other climate-related risks. As business and governmental interests are not confined to its home country, the global nature of SNA impacts and the broad exposure to risks could have huge financial consequences. Therefore, businesses, industry and governments will benefit from increased understanding of the modulation of the regional climate interannual-to-decadal timescales, and improved predictions that this brings.
Decadal climate forecasting is an emerging technology which has the potential to provide valuable early warnings of climatic events, and more generally to improve quantification of weather and climate related risks, at lead times up to 10 years ahead. The UK Met Office has been a pioneer in the development of decadal forecasting capabilities and leads the World Meteorological Organisation (WMO) activity for the global dissemination of these experimental forecasts. The potential beneficiaries of these forecasts thereby include national meteorological services in all WMO countries, and their customers. Therefore, the outcomes of WISHBONE will benefit the Met Office and Climate prediction services by improving understanding of the SNA's role in driving regional climate variability and high-impact weather, in evaluating models and predictions, and the identification for improvements in future climate models and prediction systems (e.g. for CMIP7). Furthermore, due to the global dissemination of the prediction experiments via the WMO, WISHBONE's results could have a worldwide impact.
The public interest in climate change and related issues is greater than ever. There is particular interest in understanding past and future changes in the local climate that people experience - for example in the UK - and how these local changes relate to changes on larger regional and global scales. As indicated above, the SNA exerts a significant influence on climate change in the UK and elsewhere; therefore there is public interest in understanding the nature of these influences and how they may change in the future. WISHBONE will engage the public on the causes of regional variability and help bring greater trust to climate predictions.
It follows that improved understanding of changes in the SNA and the impacts of these changes on the wider climate system is essential to improve assessments of current and future risks arising from high impact weather and climate events. Such risk assessments are in urgent demand both from governments - for example the UK government's 5-yearly Climate Change Risk Assessments (CCRA) - and increasingly from businesses in a wide range of sectors (including insurance, Energy, Fisheries and agriculture). For example, the international Task Force on Climate Related Financial Disclosures (https://www.fsb-tcfd.org/) recently issued an urgent call for a step change in the capacity of businesses to quantify their physical and other climate-related risks. As business and governmental interests are not confined to its home country, the global nature of SNA impacts and the broad exposure to risks could have huge financial consequences. Therefore, businesses, industry and governments will benefit from increased understanding of the modulation of the regional climate interannual-to-decadal timescales, and improved predictions that this brings.
Decadal climate forecasting is an emerging technology which has the potential to provide valuable early warnings of climatic events, and more generally to improve quantification of weather and climate related risks, at lead times up to 10 years ahead. The UK Met Office has been a pioneer in the development of decadal forecasting capabilities and leads the World Meteorological Organisation (WMO) activity for the global dissemination of these experimental forecasts. The potential beneficiaries of these forecasts thereby include national meteorological services in all WMO countries, and their customers. Therefore, the outcomes of WISHBONE will benefit the Met Office and Climate prediction services by improving understanding of the SNA's role in driving regional climate variability and high-impact weather, in evaluating models and predictions, and the identification for improvements in future climate models and prediction systems (e.g. for CMIP7). Furthermore, due to the global dissemination of the prediction experiments via the WMO, WISHBONE's results could have a worldwide impact.
The public interest in climate change and related issues is greater than ever. There is particular interest in understanding past and future changes in the local climate that people experience - for example in the UK - and how these local changes relate to changes on larger regional and global scales. As indicated above, the SNA exerts a significant influence on climate change in the UK and elsewhere; therefore there is public interest in understanding the nature of these influences and how they may change in the future. WISHBONE will engage the public on the causes of regional variability and help bring greater trust to climate predictions.
Publications
Megann A
(2021)
Mechanisms for Late 20th and Early 21st Century Decadal AMOC Variability
in Journal of Geophysical Research: Oceans
Josey S
(2022)
Subpolar Atlantic Ocean mixed layer heat content variability is increasingly driven by an active ocean
in Communications Earth & Environment
Mecking J
(2023)
The decrease in ocean heat transport in response to global warming
in Nature Climate Change
Robson J
(2022)
The Role of Anthropogenic Aerosol Forcing in the 1850-1985 Strengthening of the AMOC in CMIP6 Historical Simulations
in Journal of Climate
Description | We have found that the year to year variability in the near surface temperature is more controlled by ocean processes than previously thought. It had been assumed that the year to year variability of the temperature in the very surface layer of the ocean (the mixed layer) was determined by the amount of heat added or taken away by the atmosphere (for example by stronger or weaker winds leading to more or less evaporation). We showed using an ocean model and observations that the oceanic supply of heat by lateral or vertical transport is the controling factor on average about 50% of the time and in fact since about 1960 the ocean has become more and more important compared to the atmospheric input. |
Exploitation Route | The finding that the ocean is becoming more dominant as the controlling factor will be helpful to test and improve seasonal and decadal prediction systems (for example the Met Office GloSEA and DePreSys systems. |
Sectors | Aerospace Defence and Marine Environment Government Democracy and Justice |
Description | Consequences of Arctic Warming for European Climate and Extreme Weather |
Amount | £290,138 (GBP) |
Funding ID | NE/V004875/1 |
Organisation | Natural Environment Research Council |
Sector | Public |
Country | United Kingdom |
Start | 11/2020 |
End | 11/2023 |
Description | GreenBlock |
Organisation | University of Lincoln |
Department | School of Geography |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | providing high resolution coupled model output and advice on how to use it |
Collaborator Contribution | expertise in atmospheric processes related to Greenland Blocking and implications for regional weather and climate |
Impact | The collaboration has only just started so output and outcomes will occur int he next 2-3 years. The collaboration involves two disciplines: oceanography and meteorology |
Start Year | 2022 |