Rethinking carbonate diagenesis: clues to past carbon cycling from an overlooked carbon sink

Lead Research Organisation: University of Bristol
Department Name: Geographical Sciences

Abstract

Over geological timescales carbon is recycled through the atmosphere, the biosphere, the ocean, and even gets incorporated into sedimentary rock; this movement of carbon between reservoirs is colloquially called the 'carbon cycle.' Carbon in the rock record can be preserved as organic (biological) molecules or inorganic molecules of calcium carbonate, also known as limestone. By studying the chemical differences between the carbon in these organic and inorganic carbon compounds, we can reconstruct aspects of the history of life, past changes in climate, and even the history of the oxygenation of Earth's atmosphere.

Recently, we have recognised that the way we read geologic history may be vastly influenced by a third type of carbon in the rock record. 'Diagenetic carbonate' is made of the same mineral as limestone, but forms from decomposed organic carbon. Its carbon, therefore, can be more chemically similar to the organic carbon from which it forms. A better understanding of the amount of carbon stored as diagenetic carbonate during earth's history could fundamentally change the answers to questions relating to past oxygen levels and past climate changes. Indeed, diagenetic carbonate certainly seems to be more common in the rock record than it is in the modern ocean - for example much of the limestone at Britain's most popular fossil tourism sites is diagenetic carbonate, including parts of the Dorset, Somerset, Yorkshire, and Glamorgan coastlines. Unfortunately, our understanding of the production of diagenetic carbonate during various geologic periods is in its infancy.

The formation of diagenetic carbonate is governed by the interactions of many different chemical processes in the ocean sediment. Therefore, to decipher when, why, and how much diagenetic carbonate is produced under different environmental and oceanic conditions, I will use state of the art computer modelling to answer these questions. In light of the resulting calculations, I will be able to reinterpret aspects of past climates, abrupt climate change and the history of the oxygenation of Earth's atmosphere.

In addition to this, I will also be conducting field work at sites with abundant diagenetic carbonate (including those on the Somerset and Yorkshire coasts) and measuring the chemistry of the diagenetic carbonates. With this information, the computer models I use will then be able to rewind the sedimentary record to decipher what kinds of environmental factors led to the formation of these diagenetic carbonates. The Somerset coast contains the records of a mass extinction and the Yorkshire coast the records of a time when the ocean was extremely low in oxygen. The information that the diagenetic carbonates provide about the past environments will helps us unravel the causes and consequences of these past episodes of rapid climate change. This new and exciting method to learn about the past from diagenetic carbonate, an untapped archive of past climates, can then be applied to all sorts of other episodes of climate change in Earth history.

This fellowship answers a call in the field of palaeoclimate science for interdisciplinarity. We can learn much more by combining the power of modelling with exciting new field and laboratory observations. I have designed a fellowship research plan which integrates and augments my skills in field and lab geology as well as climate modelling, and assembled a cast of collaborators who are world leaders in their respective fields. This project will serve as a model to geoscientists studying the history of life and climate for how modelling and data approaches can be combined in a new, powerful way.

Planned Impact

Who and How?
Public: The public will benefit from outreach events including Festival of Nature and Discover, expert-guided field excursions highlighting how this research deciphers the history behind some of the most popular British fossil hunting localities, and activity and quiz sheets to bring students in the field via the Geologist's Association Junior Arm "Rockwatch". All of the field guides and activity/quiz sheets I generate will be hosted on my website for general use as will information describing what some of the most prominent features at some of Britain's best-loved rocky seaside outcrops can tell us about the history of life and climate.

Postgraduate students: Postgraduates will benefit from a 3-day carbonate diagenesis workshop that I will conduct twice over the course of this fellowship in conjunction with Sandra Arndt and Fiona Whitaker. This workshop has been conceived as a short course that will be conducted every three years in perpetuity. All palaeoclimate students grapple with diagenesis in some form during their postgraduate work (either directly or indirectly), yet it is an oft-neglected topic. This hands-on workshop will introduce students to 1) chemical changes and proxy fidelity; 2) authigenic minerals as proxies; 3) reaction-transport modelling. It will also establish a network of early-career researchers with a core focus but varied backgrounds, fostering future collaborations within this community. I will also invite motivated postgraduates to serve as field assistants for my field work, giving them valuable field geology skills.

Industry: The hydrocarbon industry will benefit from a new palaeoenvironmental proxy and an improved, integrative understanding regarding the precipitation of diagenetic carbonates. This fellowship will shed light on the controls on organic matter preservation and hence on petroleum source rock formation. Improved understanding of cementation, a key control on mechanical strength, will contribute to more effective prediction in tight carbonate systems, which are important hosts for shale oil and gas.

Scientific community: The scientific community will benefit from a diversification of the community. Women are traditionally underrepresented in the modelling subfield of geosciences. This fellowship not only funds a woman for continued modelling-based research, but two of the collaborators on the project (SA, FW) are women modellers. A strong mentoring network of women modellers will help mitigate gender imbalance in the field. Additionally, I will actively encourage female students to participate in the diagenesis training workshop and as field assistants. This project also benefits the scientific community by promoting ever tighter collaboration between data and modeling experts and integrating these approaches seamlessly from its inception, helping to bridge the 'data-model divide.'

Practical strategies to ensure the benefit:
1. Become a highly visible research leader and establish new international working groups to promote the multidisciplinary techniques I will employ.
2. Publish results, methodologies, and model code in high profile open access journals
3. Present work at 2 conferences per year (1 EU, 1 international), at the University of Bristol, and the departments of my external collaborators
4. Convene sessions at international meetings (min. 1 each at Goldschmidt and AGU)
5. Lead field trips for amateur rock hounds and students to local outcrops
6. Publish activity worksheets and field guides on my website
7. Design experiments for Festival of Nature and Discover and train as a STEM ambassador to bring these activities to classrooms
8. Issue press releases targeting newspapers, television and other popular media outlets, e.g. NERC Planet Earth publication, New Scientist
9. Organise a diagenesis workshop for postgraduates every 3 years
10. Involve students in my research (as field assistants plus teaching and research project supervision)
 
Description Calcium carbonate (limestone) is the most important 'sink' of carbon on long (geological) timescales. Calcium carbonate can be formed by marine life in the water column/on the seafloor. Chemical cycling in marine sediments may favor the dissolution or preservation of this carbonate or even form more carbonate. We have run models to try to understand how chemical reactions in marine sediments control the stability of calcium carbonate and the likelihood of new carbonate formation. Our main finding to date is that the factors considered most likely to lead to carbonate stability in marine sediments do not include lack of oxygen or copious microbial sulfate reduction, the prime culprits most previous research points to.
Exploitation Route This affects our predictions of long-term (millennial scale) future atmospheric CO2. It also affects our understanding of how carbonate features visible in coastal outcrops all over Britain (e.g. the strata hosting fossils at Lyme Regis) have formed and what we can infer about past climate and environment on the basis of these features. Down the line, a fuller understanding of the complex interplay between different chemical reactions in marine sediments could inform potential geoengineering efforts to sequester anthropogenic CO2 by precipitating carbonate in marine rocks/sediments.
Sectors Energy,Environment,Culture, Heritage, Museums and Collections

 
Description Cretaceous OAEs 
Organisation University of Bristol
Department School of Chemistry
Country United Kingdom 
Sector Academic/University 
PI Contribution PhD student Markus Adloff diagnosed the source of carbon emissions associated with Cretaceous OAE1a using an Earth system model. Published Adloff et al., 2020. Weather tracers (trace metals and trace metal isotopes) added to cGENIE. Two further manuscripts in prep documenting and applying the model additions.
Collaborator Contribution Fanny Monteiro, David Naafs and Dan Lunt (University of Bristol) have provided expertise to guide the experimental design and Steve Hesselbo (University of Exeter) has provided background expertise about the event. Andy Ridgwell has made model modifications to permit the work to be carried forward.
Impact Adloff et al., 2020 Two further manuscripts in prep led by Adloff.
Start Year 2016
 
Description Cretaceous OAEs 
Organisation University of California, Riverside
Country United States 
Sector Academic/University 
PI Contribution PhD student Markus Adloff diagnosed the source of carbon emissions associated with Cretaceous OAE1a using an Earth system model. Published Adloff et al., 2020. Weather tracers (trace metals and trace metal isotopes) added to cGENIE. Two further manuscripts in prep documenting and applying the model additions.
Collaborator Contribution Fanny Monteiro, David Naafs and Dan Lunt (University of Bristol) have provided expertise to guide the experimental design and Steve Hesselbo (University of Exeter) has provided background expertise about the event. Andy Ridgwell has made model modifications to permit the work to be carried forward.
Impact Adloff et al., 2020 Two further manuscripts in prep led by Adloff.
Start Year 2016
 
Description Cretaceous OAEs 
Organisation University of Exeter
Country United Kingdom 
Sector Academic/University 
PI Contribution PhD student Markus Adloff diagnosed the source of carbon emissions associated with Cretaceous OAE1a using an Earth system model. Published Adloff et al., 2020. Weather tracers (trace metals and trace metal isotopes) added to cGENIE. Two further manuscripts in prep documenting and applying the model additions.
Collaborator Contribution Fanny Monteiro, David Naafs and Dan Lunt (University of Bristol) have provided expertise to guide the experimental design and Steve Hesselbo (University of Exeter) has provided background expertise about the event. Andy Ridgwell has made model modifications to permit the work to be carried forward.
Impact Adloff et al., 2020 Two further manuscripts in prep led by Adloff.
Start Year 2016
 
Description Deep sea carbonate burial and paleoclimate 
Organisation Duke University
Country United States 
Sector Academic/University 
PI Contribution Database creation for deep sea carbonate burial across timeslices covering broad swaths of the Cenozoic and latest Cretaceous. Earth system modelling and reaction-transport modelling ensembles investigating links between climate, CO2, and deep sea carbonate burial. These data are informing my own work, but have also generated new collaborations with colleagues who are reconstructing benthic and planktic palaeo-pH and palaeo-CO2 records including at St. Andrews (a co- supervised master's student) and Southampton/ETH. interesting in using the output to contextualize Analysis of the interplay between the biological pump, sedimentary carbon burial, and atmospheric CO2 on geological timescales using Earth system modelling.
Collaborator Contribution Biostratigraphy expertise: Dani Schmidt, Bristol, Ellen Thomas, Yale/Wesleyan, Babette Hoogakker, Oxford, Sandra Kirtland Turner, UC Riverside, Heiko Paelike, University of Bremen (MARUM). Further earth-system and reaction transport modelling experiments: Sandra Kirtland Turner, UC Riverside, Andy Ridgwell, Bristol/UC Riverside, Sandra Arndt, Bristol, Jamie Wilson, Bristol Assistance with statistics: Lydia Greene, Duke Boron isotope measurements: James Rae, St. Andrews University, Eleni Anagnostou (NOCS/ETH), Gavin Foster (NOCS) Dissolution metrics: Kirsty Edgar, Birmingham University
Impact This set of collaborations has resulted in one manuscript in review about the decoupling between climate and carbonate burial. Several further manuscripts are in prep (a review of carbonate compensation and a reappraisal of C-cycling across the end-Cretaceous mass extinction). Newer aspects of this collaboration currently under development include investigations into the interplay between the biological pump, sedimentary organic matter recycling, and carbonate burial (Arndt, Wilson) and long term Cenozoic palaeo-pH and pCO2 records (James Rae, St. Andrews, Sandy Kirtland Turner, UCR, Eleni Anagnostou, and Gavin Foster). Outputs include many conference presentations including at Goldschmidt, a Gordon Research Conference, AGUx2 (one invited talk), and a publication Greene et al., 2019.
Start Year 2013
 
Description Deep sea carbonate burial and paleoclimate 
Organisation ETH Zurich
Country Switzerland 
Sector Academic/University 
PI Contribution Database creation for deep sea carbonate burial across timeslices covering broad swaths of the Cenozoic and latest Cretaceous. Earth system modelling and reaction-transport modelling ensembles investigating links between climate, CO2, and deep sea carbonate burial. These data are informing my own work, but have also generated new collaborations with colleagues who are reconstructing benthic and planktic palaeo-pH and palaeo-CO2 records including at St. Andrews (a co- supervised master's student) and Southampton/ETH. interesting in using the output to contextualize Analysis of the interplay between the biological pump, sedimentary carbon burial, and atmospheric CO2 on geological timescales using Earth system modelling.
Collaborator Contribution Biostratigraphy expertise: Dani Schmidt, Bristol, Ellen Thomas, Yale/Wesleyan, Babette Hoogakker, Oxford, Sandra Kirtland Turner, UC Riverside, Heiko Paelike, University of Bremen (MARUM). Further earth-system and reaction transport modelling experiments: Sandra Kirtland Turner, UC Riverside, Andy Ridgwell, Bristol/UC Riverside, Sandra Arndt, Bristol, Jamie Wilson, Bristol Assistance with statistics: Lydia Greene, Duke Boron isotope measurements: James Rae, St. Andrews University, Eleni Anagnostou (NOCS/ETH), Gavin Foster (NOCS) Dissolution metrics: Kirsty Edgar, Birmingham University
Impact This set of collaborations has resulted in one manuscript in review about the decoupling between climate and carbonate burial. Several further manuscripts are in prep (a review of carbonate compensation and a reappraisal of C-cycling across the end-Cretaceous mass extinction). Newer aspects of this collaboration currently under development include investigations into the interplay between the biological pump, sedimentary organic matter recycling, and carbonate burial (Arndt, Wilson) and long term Cenozoic palaeo-pH and pCO2 records (James Rae, St. Andrews, Sandy Kirtland Turner, UCR, Eleni Anagnostou, and Gavin Foster). Outputs include many conference presentations including at Goldschmidt, a Gordon Research Conference, AGUx2 (one invited talk), and a publication Greene et al., 2019.
Start Year 2013
 
Description Deep sea carbonate burial and paleoclimate 
Organisation National Oceanography Centre
Country United Kingdom 
Sector Academic/University 
PI Contribution Database creation for deep sea carbonate burial across timeslices covering broad swaths of the Cenozoic and latest Cretaceous. Earth system modelling and reaction-transport modelling ensembles investigating links between climate, CO2, and deep sea carbonate burial. These data are informing my own work, but have also generated new collaborations with colleagues who are reconstructing benthic and planktic palaeo-pH and palaeo-CO2 records including at St. Andrews (a co- supervised master's student) and Southampton/ETH. interesting in using the output to contextualize Analysis of the interplay between the biological pump, sedimentary carbon burial, and atmospheric CO2 on geological timescales using Earth system modelling.
Collaborator Contribution Biostratigraphy expertise: Dani Schmidt, Bristol, Ellen Thomas, Yale/Wesleyan, Babette Hoogakker, Oxford, Sandra Kirtland Turner, UC Riverside, Heiko Paelike, University of Bremen (MARUM). Further earth-system and reaction transport modelling experiments: Sandra Kirtland Turner, UC Riverside, Andy Ridgwell, Bristol/UC Riverside, Sandra Arndt, Bristol, Jamie Wilson, Bristol Assistance with statistics: Lydia Greene, Duke Boron isotope measurements: James Rae, St. Andrews University, Eleni Anagnostou (NOCS/ETH), Gavin Foster (NOCS) Dissolution metrics: Kirsty Edgar, Birmingham University
Impact This set of collaborations has resulted in one manuscript in review about the decoupling between climate and carbonate burial. Several further manuscripts are in prep (a review of carbonate compensation and a reappraisal of C-cycling across the end-Cretaceous mass extinction). Newer aspects of this collaboration currently under development include investigations into the interplay between the biological pump, sedimentary organic matter recycling, and carbonate burial (Arndt, Wilson) and long term Cenozoic palaeo-pH and pCO2 records (James Rae, St. Andrews, Sandy Kirtland Turner, UCR, Eleni Anagnostou, and Gavin Foster). Outputs include many conference presentations including at Goldschmidt, a Gordon Research Conference, AGUx2 (one invited talk), and a publication Greene et al., 2019.
Start Year 2013
 
Description Deep sea carbonate burial and paleoclimate 
Organisation University of Bremen
Country Germany 
Sector Academic/University 
PI Contribution Database creation for deep sea carbonate burial across timeslices covering broad swaths of the Cenozoic and latest Cretaceous. Earth system modelling and reaction-transport modelling ensembles investigating links between climate, CO2, and deep sea carbonate burial. These data are informing my own work, but have also generated new collaborations with colleagues who are reconstructing benthic and planktic palaeo-pH and palaeo-CO2 records including at St. Andrews (a co- supervised master's student) and Southampton/ETH. interesting in using the output to contextualize Analysis of the interplay between the biological pump, sedimentary carbon burial, and atmospheric CO2 on geological timescales using Earth system modelling.
Collaborator Contribution Biostratigraphy expertise: Dani Schmidt, Bristol, Ellen Thomas, Yale/Wesleyan, Babette Hoogakker, Oxford, Sandra Kirtland Turner, UC Riverside, Heiko Paelike, University of Bremen (MARUM). Further earth-system and reaction transport modelling experiments: Sandra Kirtland Turner, UC Riverside, Andy Ridgwell, Bristol/UC Riverside, Sandra Arndt, Bristol, Jamie Wilson, Bristol Assistance with statistics: Lydia Greene, Duke Boron isotope measurements: James Rae, St. Andrews University, Eleni Anagnostou (NOCS/ETH), Gavin Foster (NOCS) Dissolution metrics: Kirsty Edgar, Birmingham University
Impact This set of collaborations has resulted in one manuscript in review about the decoupling between climate and carbonate burial. Several further manuscripts are in prep (a review of carbonate compensation and a reappraisal of C-cycling across the end-Cretaceous mass extinction). Newer aspects of this collaboration currently under development include investigations into the interplay between the biological pump, sedimentary organic matter recycling, and carbonate burial (Arndt, Wilson) and long term Cenozoic palaeo-pH and pCO2 records (James Rae, St. Andrews, Sandy Kirtland Turner, UCR, Eleni Anagnostou, and Gavin Foster). Outputs include many conference presentations including at Goldschmidt, a Gordon Research Conference, AGUx2 (one invited talk), and a publication Greene et al., 2019.
Start Year 2013
 
Description Deep sea carbonate burial and paleoclimate 
Organisation University of Bristol
Country United Kingdom 
Sector Academic/University 
PI Contribution Database creation for deep sea carbonate burial across timeslices covering broad swaths of the Cenozoic and latest Cretaceous. Earth system modelling and reaction-transport modelling ensembles investigating links between climate, CO2, and deep sea carbonate burial. These data are informing my own work, but have also generated new collaborations with colleagues who are reconstructing benthic and planktic palaeo-pH and palaeo-CO2 records including at St. Andrews (a co- supervised master's student) and Southampton/ETH. interesting in using the output to contextualize Analysis of the interplay between the biological pump, sedimentary carbon burial, and atmospheric CO2 on geological timescales using Earth system modelling.
Collaborator Contribution Biostratigraphy expertise: Dani Schmidt, Bristol, Ellen Thomas, Yale/Wesleyan, Babette Hoogakker, Oxford, Sandra Kirtland Turner, UC Riverside, Heiko Paelike, University of Bremen (MARUM). Further earth-system and reaction transport modelling experiments: Sandra Kirtland Turner, UC Riverside, Andy Ridgwell, Bristol/UC Riverside, Sandra Arndt, Bristol, Jamie Wilson, Bristol Assistance with statistics: Lydia Greene, Duke Boron isotope measurements: James Rae, St. Andrews University, Eleni Anagnostou (NOCS/ETH), Gavin Foster (NOCS) Dissolution metrics: Kirsty Edgar, Birmingham University
Impact This set of collaborations has resulted in one manuscript in review about the decoupling between climate and carbonate burial. Several further manuscripts are in prep (a review of carbonate compensation and a reappraisal of C-cycling across the end-Cretaceous mass extinction). Newer aspects of this collaboration currently under development include investigations into the interplay between the biological pump, sedimentary organic matter recycling, and carbonate burial (Arndt, Wilson) and long term Cenozoic palaeo-pH and pCO2 records (James Rae, St. Andrews, Sandy Kirtland Turner, UCR, Eleni Anagnostou, and Gavin Foster). Outputs include many conference presentations including at Goldschmidt, a Gordon Research Conference, AGUx2 (one invited talk), and a publication Greene et al., 2019.
Start Year 2013
 
Description Deep sea carbonate burial and paleoclimate 
Organisation University of California, Riverside
Country United States 
Sector Academic/University 
PI Contribution Database creation for deep sea carbonate burial across timeslices covering broad swaths of the Cenozoic and latest Cretaceous. Earth system modelling and reaction-transport modelling ensembles investigating links between climate, CO2, and deep sea carbonate burial. These data are informing my own work, but have also generated new collaborations with colleagues who are reconstructing benthic and planktic palaeo-pH and palaeo-CO2 records including at St. Andrews (a co- supervised master's student) and Southampton/ETH. interesting in using the output to contextualize Analysis of the interplay between the biological pump, sedimentary carbon burial, and atmospheric CO2 on geological timescales using Earth system modelling.
Collaborator Contribution Biostratigraphy expertise: Dani Schmidt, Bristol, Ellen Thomas, Yale/Wesleyan, Babette Hoogakker, Oxford, Sandra Kirtland Turner, UC Riverside, Heiko Paelike, University of Bremen (MARUM). Further earth-system and reaction transport modelling experiments: Sandra Kirtland Turner, UC Riverside, Andy Ridgwell, Bristol/UC Riverside, Sandra Arndt, Bristol, Jamie Wilson, Bristol Assistance with statistics: Lydia Greene, Duke Boron isotope measurements: James Rae, St. Andrews University, Eleni Anagnostou (NOCS/ETH), Gavin Foster (NOCS) Dissolution metrics: Kirsty Edgar, Birmingham University
Impact This set of collaborations has resulted in one manuscript in review about the decoupling between climate and carbonate burial. Several further manuscripts are in prep (a review of carbonate compensation and a reappraisal of C-cycling across the end-Cretaceous mass extinction). Newer aspects of this collaboration currently under development include investigations into the interplay between the biological pump, sedimentary organic matter recycling, and carbonate burial (Arndt, Wilson) and long term Cenozoic palaeo-pH and pCO2 records (James Rae, St. Andrews, Sandy Kirtland Turner, UCR, Eleni Anagnostou, and Gavin Foster). Outputs include many conference presentations including at Goldschmidt, a Gordon Research Conference, AGUx2 (one invited talk), and a publication Greene et al., 2019.
Start Year 2013
 
Description Deep sea carbonate burial and paleoclimate 
Organisation University of Oxford
Country United Kingdom 
Sector Academic/University 
PI Contribution Database creation for deep sea carbonate burial across timeslices covering broad swaths of the Cenozoic and latest Cretaceous. Earth system modelling and reaction-transport modelling ensembles investigating links between climate, CO2, and deep sea carbonate burial. These data are informing my own work, but have also generated new collaborations with colleagues who are reconstructing benthic and planktic palaeo-pH and palaeo-CO2 records including at St. Andrews (a co- supervised master's student) and Southampton/ETH. interesting in using the output to contextualize Analysis of the interplay between the biological pump, sedimentary carbon burial, and atmospheric CO2 on geological timescales using Earth system modelling.
Collaborator Contribution Biostratigraphy expertise: Dani Schmidt, Bristol, Ellen Thomas, Yale/Wesleyan, Babette Hoogakker, Oxford, Sandra Kirtland Turner, UC Riverside, Heiko Paelike, University of Bremen (MARUM). Further earth-system and reaction transport modelling experiments: Sandra Kirtland Turner, UC Riverside, Andy Ridgwell, Bristol/UC Riverside, Sandra Arndt, Bristol, Jamie Wilson, Bristol Assistance with statistics: Lydia Greene, Duke Boron isotope measurements: James Rae, St. Andrews University, Eleni Anagnostou (NOCS/ETH), Gavin Foster (NOCS) Dissolution metrics: Kirsty Edgar, Birmingham University
Impact This set of collaborations has resulted in one manuscript in review about the decoupling between climate and carbonate burial. Several further manuscripts are in prep (a review of carbonate compensation and a reappraisal of C-cycling across the end-Cretaceous mass extinction). Newer aspects of this collaboration currently under development include investigations into the interplay between the biological pump, sedimentary organic matter recycling, and carbonate burial (Arndt, Wilson) and long term Cenozoic palaeo-pH and pCO2 records (James Rae, St. Andrews, Sandy Kirtland Turner, UCR, Eleni Anagnostou, and Gavin Foster). Outputs include many conference presentations including at Goldschmidt, a Gordon Research Conference, AGUx2 (one invited talk), and a publication Greene et al., 2019.
Start Year 2013
 
Description Deep sea carbonate burial and paleoclimate 
Organisation University of St Andrews
Country United Kingdom 
Sector Academic/University 
PI Contribution Database creation for deep sea carbonate burial across timeslices covering broad swaths of the Cenozoic and latest Cretaceous. Earth system modelling and reaction-transport modelling ensembles investigating links between climate, CO2, and deep sea carbonate burial. These data are informing my own work, but have also generated new collaborations with colleagues who are reconstructing benthic and planktic palaeo-pH and palaeo-CO2 records including at St. Andrews (a co- supervised master's student) and Southampton/ETH. interesting in using the output to contextualize Analysis of the interplay between the biological pump, sedimentary carbon burial, and atmospheric CO2 on geological timescales using Earth system modelling.
Collaborator Contribution Biostratigraphy expertise: Dani Schmidt, Bristol, Ellen Thomas, Yale/Wesleyan, Babette Hoogakker, Oxford, Sandra Kirtland Turner, UC Riverside, Heiko Paelike, University of Bremen (MARUM). Further earth-system and reaction transport modelling experiments: Sandra Kirtland Turner, UC Riverside, Andy Ridgwell, Bristol/UC Riverside, Sandra Arndt, Bristol, Jamie Wilson, Bristol Assistance with statistics: Lydia Greene, Duke Boron isotope measurements: James Rae, St. Andrews University, Eleni Anagnostou (NOCS/ETH), Gavin Foster (NOCS) Dissolution metrics: Kirsty Edgar, Birmingham University
Impact This set of collaborations has resulted in one manuscript in review about the decoupling between climate and carbonate burial. Several further manuscripts are in prep (a review of carbonate compensation and a reappraisal of C-cycling across the end-Cretaceous mass extinction). Newer aspects of this collaboration currently under development include investigations into the interplay between the biological pump, sedimentary organic matter recycling, and carbonate burial (Arndt, Wilson) and long term Cenozoic palaeo-pH and pCO2 records (James Rae, St. Andrews, Sandy Kirtland Turner, UCR, Eleni Anagnostou, and Gavin Foster). Outputs include many conference presentations including at Goldschmidt, a Gordon Research Conference, AGUx2 (one invited talk), and a publication Greene et al., 2019.
Start Year 2013
 
Description Deep sea carbonate burial and paleoclimate 
Organisation Wesleyan University
Country United States 
Sector Academic/University 
PI Contribution Database creation for deep sea carbonate burial across timeslices covering broad swaths of the Cenozoic and latest Cretaceous. Earth system modelling and reaction-transport modelling ensembles investigating links between climate, CO2, and deep sea carbonate burial. These data are informing my own work, but have also generated new collaborations with colleagues who are reconstructing benthic and planktic palaeo-pH and palaeo-CO2 records including at St. Andrews (a co- supervised master's student) and Southampton/ETH. interesting in using the output to contextualize Analysis of the interplay between the biological pump, sedimentary carbon burial, and atmospheric CO2 on geological timescales using Earth system modelling.
Collaborator Contribution Biostratigraphy expertise: Dani Schmidt, Bristol, Ellen Thomas, Yale/Wesleyan, Babette Hoogakker, Oxford, Sandra Kirtland Turner, UC Riverside, Heiko Paelike, University of Bremen (MARUM). Further earth-system and reaction transport modelling experiments: Sandra Kirtland Turner, UC Riverside, Andy Ridgwell, Bristol/UC Riverside, Sandra Arndt, Bristol, Jamie Wilson, Bristol Assistance with statistics: Lydia Greene, Duke Boron isotope measurements: James Rae, St. Andrews University, Eleni Anagnostou (NOCS/ETH), Gavin Foster (NOCS) Dissolution metrics: Kirsty Edgar, Birmingham University
Impact This set of collaborations has resulted in one manuscript in review about the decoupling between climate and carbonate burial. Several further manuscripts are in prep (a review of carbonate compensation and a reappraisal of C-cycling across the end-Cretaceous mass extinction). Newer aspects of this collaboration currently under development include investigations into the interplay between the biological pump, sedimentary organic matter recycling, and carbonate burial (Arndt, Wilson) and long term Cenozoic palaeo-pH and pCO2 records (James Rae, St. Andrews, Sandy Kirtland Turner, UCR, Eleni Anagnostou, and Gavin Foster). Outputs include many conference presentations including at Goldschmidt, a Gordon Research Conference, AGUx2 (one invited talk), and a publication Greene et al., 2019.
Start Year 2013
 
Description Deep sea carbonate burial and paleoclimate 
Organisation Yale University
Country United States 
Sector Academic/University 
PI Contribution Database creation for deep sea carbonate burial across timeslices covering broad swaths of the Cenozoic and latest Cretaceous. Earth system modelling and reaction-transport modelling ensembles investigating links between climate, CO2, and deep sea carbonate burial. These data are informing my own work, but have also generated new collaborations with colleagues who are reconstructing benthic and planktic palaeo-pH and palaeo-CO2 records including at St. Andrews (a co- supervised master's student) and Southampton/ETH. interesting in using the output to contextualize Analysis of the interplay between the biological pump, sedimentary carbon burial, and atmospheric CO2 on geological timescales using Earth system modelling.
Collaborator Contribution Biostratigraphy expertise: Dani Schmidt, Bristol, Ellen Thomas, Yale/Wesleyan, Babette Hoogakker, Oxford, Sandra Kirtland Turner, UC Riverside, Heiko Paelike, University of Bremen (MARUM). Further earth-system and reaction transport modelling experiments: Sandra Kirtland Turner, UC Riverside, Andy Ridgwell, Bristol/UC Riverside, Sandra Arndt, Bristol, Jamie Wilson, Bristol Assistance with statistics: Lydia Greene, Duke Boron isotope measurements: James Rae, St. Andrews University, Eleni Anagnostou (NOCS/ETH), Gavin Foster (NOCS) Dissolution metrics: Kirsty Edgar, Birmingham University
Impact This set of collaborations has resulted in one manuscript in review about the decoupling between climate and carbonate burial. Several further manuscripts are in prep (a review of carbonate compensation and a reappraisal of C-cycling across the end-Cretaceous mass extinction). Newer aspects of this collaboration currently under development include investigations into the interplay between the biological pump, sedimentary organic matter recycling, and carbonate burial (Arndt, Wilson) and long term Cenozoic palaeo-pH and pCO2 records (James Rae, St. Andrews, Sandy Kirtland Turner, UCR, Eleni Anagnostou, and Gavin Foster). Outputs include many conference presentations including at Goldschmidt, a Gordon Research Conference, AGUx2 (one invited talk), and a publication Greene et al., 2019.
Start Year 2013
 
Description Fieldwork - modern carbonate cementation 
Organisation Khalifa University
Country United Arab Emirates 
Sector Academic/University 
PI Contribution Along with PhD student Hazel Vallack, Fiona Whitaker (Bristol - Earth Sciences), and Stephen Lokier (Khalifa University), I undertook fieldwork (two field seasons) to coastal Abu Dhabi to study in situ carbonate hardground formation. We took in situ cores across actively forming hardgrounds, extracted porewaters, measured carbonate chemistry parameters in situ. In the laboratory we have done extensive work measuring water chemistry and modelling the water chemistry using PHREEQC. We've also made thin sections of some hard grounds and examined them using an SEM.
Collaborator Contribution Stephen Lokier (Khalifa University) accompanied us in the field and ran grain size analyses, taking SEM images, and making thin sections of carbonate hardgrounds. Victoria Petryshyn (USC), Bradley Stevenson (Oklahoma), and Heather Nunn (Oklahoma) ran 16S and 18S rRNA to establish the microbial metabolisms controlling in situ carbonate chemistry. Jens Holtvoeth/Master's student Fynn Bishop-Guest (Bristol, School of Chemistry), characterized the organic matter in our sediment cores.
Impact Results presented at regional and international conferences 2017: British Sedimentological Research Group; The Palaeoclimate Society (PACS) Conference 2018: British Sedimentological Research Group (Palaeoclimate Society Conference - 2017), 2019: The Geological Society Lyell meeting on 'Carbon: Geochemical and paleobiological perspectives'; Bathurst Meeting of Carbonate Sedimentologists 2020: Gordon Research Conference: Geobiology And in the Master's thesis of Fynn Bishop-Guest. This collaboration is highly multidisciplinary - spanning traditional geology/sedimentology, inorganic geochemistry, organic geochemistry, and microbiology.
Start Year 2017
 
Description Fieldwork - modern carbonate cementation 
Organisation University of Bristol
Department School of Chemistry
Country United Kingdom 
Sector Academic/University 
PI Contribution Along with PhD student Hazel Vallack, Fiona Whitaker (Bristol - Earth Sciences), and Stephen Lokier (Khalifa University), I undertook fieldwork (two field seasons) to coastal Abu Dhabi to study in situ carbonate hardground formation. We took in situ cores across actively forming hardgrounds, extracted porewaters, measured carbonate chemistry parameters in situ. In the laboratory we have done extensive work measuring water chemistry and modelling the water chemistry using PHREEQC. We've also made thin sections of some hard grounds and examined them using an SEM.
Collaborator Contribution Stephen Lokier (Khalifa University) accompanied us in the field and ran grain size analyses, taking SEM images, and making thin sections of carbonate hardgrounds. Victoria Petryshyn (USC), Bradley Stevenson (Oklahoma), and Heather Nunn (Oklahoma) ran 16S and 18S rRNA to establish the microbial metabolisms controlling in situ carbonate chemistry. Jens Holtvoeth/Master's student Fynn Bishop-Guest (Bristol, School of Chemistry), characterized the organic matter in our sediment cores.
Impact Results presented at regional and international conferences 2017: British Sedimentological Research Group; The Palaeoclimate Society (PACS) Conference 2018: British Sedimentological Research Group (Palaeoclimate Society Conference - 2017), 2019: The Geological Society Lyell meeting on 'Carbon: Geochemical and paleobiological perspectives'; Bathurst Meeting of Carbonate Sedimentologists 2020: Gordon Research Conference: Geobiology And in the Master's thesis of Fynn Bishop-Guest. This collaboration is highly multidisciplinary - spanning traditional geology/sedimentology, inorganic geochemistry, organic geochemistry, and microbiology.
Start Year 2017
 
Description Fieldwork - modern carbonate cementation 
Organisation University of Bristol
Department School of Earth Sciences
Country United Kingdom 
Sector Academic/University 
PI Contribution Along with PhD student Hazel Vallack, Fiona Whitaker (Bristol - Earth Sciences), and Stephen Lokier (Khalifa University), I undertook fieldwork (two field seasons) to coastal Abu Dhabi to study in situ carbonate hardground formation. We took in situ cores across actively forming hardgrounds, extracted porewaters, measured carbonate chemistry parameters in situ. In the laboratory we have done extensive work measuring water chemistry and modelling the water chemistry using PHREEQC. We've also made thin sections of some hard grounds and examined them using an SEM.
Collaborator Contribution Stephen Lokier (Khalifa University) accompanied us in the field and ran grain size analyses, taking SEM images, and making thin sections of carbonate hardgrounds. Victoria Petryshyn (USC), Bradley Stevenson (Oklahoma), and Heather Nunn (Oklahoma) ran 16S and 18S rRNA to establish the microbial metabolisms controlling in situ carbonate chemistry. Jens Holtvoeth/Master's student Fynn Bishop-Guest (Bristol, School of Chemistry), characterized the organic matter in our sediment cores.
Impact Results presented at regional and international conferences 2017: British Sedimentological Research Group; The Palaeoclimate Society (PACS) Conference 2018: British Sedimentological Research Group (Palaeoclimate Society Conference - 2017), 2019: The Geological Society Lyell meeting on 'Carbon: Geochemical and paleobiological perspectives'; Bathurst Meeting of Carbonate Sedimentologists 2020: Gordon Research Conference: Geobiology And in the Master's thesis of Fynn Bishop-Guest. This collaboration is highly multidisciplinary - spanning traditional geology/sedimentology, inorganic geochemistry, organic geochemistry, and microbiology.
Start Year 2017
 
Description Fieldwork - modern carbonate cementation 
Organisation University of Bristol
Department School of Geographical Sciences
Country United Kingdom 
Sector Academic/University 
PI Contribution Along with PhD student Hazel Vallack, Fiona Whitaker (Bristol - Earth Sciences), and Stephen Lokier (Khalifa University), I undertook fieldwork (two field seasons) to coastal Abu Dhabi to study in situ carbonate hardground formation. We took in situ cores across actively forming hardgrounds, extracted porewaters, measured carbonate chemistry parameters in situ. In the laboratory we have done extensive work measuring water chemistry and modelling the water chemistry using PHREEQC. We've also made thin sections of some hard grounds and examined them using an SEM.
Collaborator Contribution Stephen Lokier (Khalifa University) accompanied us in the field and ran grain size analyses, taking SEM images, and making thin sections of carbonate hardgrounds. Victoria Petryshyn (USC), Bradley Stevenson (Oklahoma), and Heather Nunn (Oklahoma) ran 16S and 18S rRNA to establish the microbial metabolisms controlling in situ carbonate chemistry. Jens Holtvoeth/Master's student Fynn Bishop-Guest (Bristol, School of Chemistry), characterized the organic matter in our sediment cores.
Impact Results presented at regional and international conferences 2017: British Sedimentological Research Group; The Palaeoclimate Society (PACS) Conference 2018: British Sedimentological Research Group (Palaeoclimate Society Conference - 2017), 2019: The Geological Society Lyell meeting on 'Carbon: Geochemical and paleobiological perspectives'; Bathurst Meeting of Carbonate Sedimentologists 2020: Gordon Research Conference: Geobiology And in the Master's thesis of Fynn Bishop-Guest. This collaboration is highly multidisciplinary - spanning traditional geology/sedimentology, inorganic geochemistry, organic geochemistry, and microbiology.
Start Year 2017
 
Description Fieldwork - modern carbonate cementation 
Organisation University of Oklahoma
Department Department of Microbiology and Plant Biology
Country United States 
Sector Academic/University 
PI Contribution Along with PhD student Hazel Vallack, Fiona Whitaker (Bristol - Earth Sciences), and Stephen Lokier (Khalifa University), I undertook fieldwork (two field seasons) to coastal Abu Dhabi to study in situ carbonate hardground formation. We took in situ cores across actively forming hardgrounds, extracted porewaters, measured carbonate chemistry parameters in situ. In the laboratory we have done extensive work measuring water chemistry and modelling the water chemistry using PHREEQC. We've also made thin sections of some hard grounds and examined them using an SEM.
Collaborator Contribution Stephen Lokier (Khalifa University) accompanied us in the field and ran grain size analyses, taking SEM images, and making thin sections of carbonate hardgrounds. Victoria Petryshyn (USC), Bradley Stevenson (Oklahoma), and Heather Nunn (Oklahoma) ran 16S and 18S rRNA to establish the microbial metabolisms controlling in situ carbonate chemistry. Jens Holtvoeth/Master's student Fynn Bishop-Guest (Bristol, School of Chemistry), characterized the organic matter in our sediment cores.
Impact Results presented at regional and international conferences 2017: British Sedimentological Research Group; The Palaeoclimate Society (PACS) Conference 2018: British Sedimentological Research Group (Palaeoclimate Society Conference - 2017), 2019: The Geological Society Lyell meeting on 'Carbon: Geochemical and paleobiological perspectives'; Bathurst Meeting of Carbonate Sedimentologists 2020: Gordon Research Conference: Geobiology And in the Master's thesis of Fynn Bishop-Guest. This collaboration is highly multidisciplinary - spanning traditional geology/sedimentology, inorganic geochemistry, organic geochemistry, and microbiology.
Start Year 2017
 
Description Fieldwork - modern carbonate cementation 
Organisation University of Southern California
Country United States 
Sector Academic/University 
PI Contribution Along with PhD student Hazel Vallack, Fiona Whitaker (Bristol - Earth Sciences), and Stephen Lokier (Khalifa University), I undertook fieldwork (two field seasons) to coastal Abu Dhabi to study in situ carbonate hardground formation. We took in situ cores across actively forming hardgrounds, extracted porewaters, measured carbonate chemistry parameters in situ. In the laboratory we have done extensive work measuring water chemistry and modelling the water chemistry using PHREEQC. We've also made thin sections of some hard grounds and examined them using an SEM.
Collaborator Contribution Stephen Lokier (Khalifa University) accompanied us in the field and ran grain size analyses, taking SEM images, and making thin sections of carbonate hardgrounds. Victoria Petryshyn (USC), Bradley Stevenson (Oklahoma), and Heather Nunn (Oklahoma) ran 16S and 18S rRNA to establish the microbial metabolisms controlling in situ carbonate chemistry. Jens Holtvoeth/Master's student Fynn Bishop-Guest (Bristol, School of Chemistry), characterized the organic matter in our sediment cores.
Impact Results presented at regional and international conferences 2017: British Sedimentological Research Group; The Palaeoclimate Society (PACS) Conference 2018: British Sedimentological Research Group (Palaeoclimate Society Conference - 2017), 2019: The Geological Society Lyell meeting on 'Carbon: Geochemical and paleobiological perspectives'; Bathurst Meeting of Carbonate Sedimentologists 2020: Gordon Research Conference: Geobiology And in the Master's thesis of Fynn Bishop-Guest. This collaboration is highly multidisciplinary - spanning traditional geology/sedimentology, inorganic geochemistry, organic geochemistry, and microbiology.
Start Year 2017
 
Description Paleoocean acidification/palaeo-pH reconstruction 
Organisation Geological Survey of Northern Ireland
Country United Kingdom 
Sector Public 
PI Contribution I have co-supervised 1 PhD student and 3 related undergraduate/masters students from St. Andrews on their thesis projects. I took these students into the field in successive summers and to the Geological Survey of Northern Ireland. We logged a Triassic-Jurassic section and collected samples of earliest Jurassic oysters to produce the first paleo-pH reconstruction from the end-Triassic extinction interval. I have analyzed Earth system model experiments to interpret these records. Separately, my PhD student and I have contributed towards earth system model experimental design and model output interpretation for a study investigating the effects of CO2 emissions rate on the inferred severity and carbon source for paleoocean acidification events. Published as Vervoort et al., 2019.
Collaborator Contribution James Rae, St. Andrews, is co-supervised the three undergraduate/master's students and together they have produced the boron isotope reconstructions for the end-Triassic event. We have presented this work at the Lyell meeting at the Geological Society of London, at Goldschmidt, and at EGU. Sandra Kirtland Turner, UC Riverside, performed earth system modelling on the relationship between emissions rate and acidification intensity. Kirsty Edgar, University of Birmingham, has calculated foram accumulation rates to inform the interpretation of the Earth System modelling output. Rob Raine has done sedimentary logging of a new time-equivalent core from the GSNI core store and Micha Ruhl (Trinity) has contributed bulk and trace element analyses.
Impact Two studies published (Henehan et al., 2019; Vervoort et al., 2019). Two manuscripts in prep (one led by me, one led by St Andrews-based PhD student).
Start Year 2015
 
Description Paleoocean acidification/palaeo-pH reconstruction 
Organisation Trinity College Dublin
Country Ireland 
Sector Academic/University 
PI Contribution I have co-supervised 1 PhD student and 3 related undergraduate/masters students from St. Andrews on their thesis projects. I took these students into the field in successive summers and to the Geological Survey of Northern Ireland. We logged a Triassic-Jurassic section and collected samples of earliest Jurassic oysters to produce the first paleo-pH reconstruction from the end-Triassic extinction interval. I have analyzed Earth system model experiments to interpret these records. Separately, my PhD student and I have contributed towards earth system model experimental design and model output interpretation for a study investigating the effects of CO2 emissions rate on the inferred severity and carbon source for paleoocean acidification events. Published as Vervoort et al., 2019.
Collaborator Contribution James Rae, St. Andrews, is co-supervised the three undergraduate/master's students and together they have produced the boron isotope reconstructions for the end-Triassic event. We have presented this work at the Lyell meeting at the Geological Society of London, at Goldschmidt, and at EGU. Sandra Kirtland Turner, UC Riverside, performed earth system modelling on the relationship between emissions rate and acidification intensity. Kirsty Edgar, University of Birmingham, has calculated foram accumulation rates to inform the interpretation of the Earth System modelling output. Rob Raine has done sedimentary logging of a new time-equivalent core from the GSNI core store and Micha Ruhl (Trinity) has contributed bulk and trace element analyses.
Impact Two studies published (Henehan et al., 2019; Vervoort et al., 2019). Two manuscripts in prep (one led by me, one led by St Andrews-based PhD student).
Start Year 2015
 
Description Paleoocean acidification/palaeo-pH reconstruction 
Organisation University of Birmingham
Department School of Biosciences
Country United Kingdom 
Sector Academic/University 
PI Contribution I have co-supervised 1 PhD student and 3 related undergraduate/masters students from St. Andrews on their thesis projects. I took these students into the field in successive summers and to the Geological Survey of Northern Ireland. We logged a Triassic-Jurassic section and collected samples of earliest Jurassic oysters to produce the first paleo-pH reconstruction from the end-Triassic extinction interval. I have analyzed Earth system model experiments to interpret these records. Separately, my PhD student and I have contributed towards earth system model experimental design and model output interpretation for a study investigating the effects of CO2 emissions rate on the inferred severity and carbon source for paleoocean acidification events. Published as Vervoort et al., 2019.
Collaborator Contribution James Rae, St. Andrews, is co-supervised the three undergraduate/master's students and together they have produced the boron isotope reconstructions for the end-Triassic event. We have presented this work at the Lyell meeting at the Geological Society of London, at Goldschmidt, and at EGU. Sandra Kirtland Turner, UC Riverside, performed earth system modelling on the relationship between emissions rate and acidification intensity. Kirsty Edgar, University of Birmingham, has calculated foram accumulation rates to inform the interpretation of the Earth System modelling output. Rob Raine has done sedimentary logging of a new time-equivalent core from the GSNI core store and Micha Ruhl (Trinity) has contributed bulk and trace element analyses.
Impact Two studies published (Henehan et al., 2019; Vervoort et al., 2019). Two manuscripts in prep (one led by me, one led by St Andrews-based PhD student).
Start Year 2015
 
Description Paleoocean acidification/palaeo-pH reconstruction 
Organisation University of California, Riverside
Country United States 
Sector Academic/University 
PI Contribution I have co-supervised 1 PhD student and 3 related undergraduate/masters students from St. Andrews on their thesis projects. I took these students into the field in successive summers and to the Geological Survey of Northern Ireland. We logged a Triassic-Jurassic section and collected samples of earliest Jurassic oysters to produce the first paleo-pH reconstruction from the end-Triassic extinction interval. I have analyzed Earth system model experiments to interpret these records. Separately, my PhD student and I have contributed towards earth system model experimental design and model output interpretation for a study investigating the effects of CO2 emissions rate on the inferred severity and carbon source for paleoocean acidification events. Published as Vervoort et al., 2019.
Collaborator Contribution James Rae, St. Andrews, is co-supervised the three undergraduate/master's students and together they have produced the boron isotope reconstructions for the end-Triassic event. We have presented this work at the Lyell meeting at the Geological Society of London, at Goldschmidt, and at EGU. Sandra Kirtland Turner, UC Riverside, performed earth system modelling on the relationship between emissions rate and acidification intensity. Kirsty Edgar, University of Birmingham, has calculated foram accumulation rates to inform the interpretation of the Earth System modelling output. Rob Raine has done sedimentary logging of a new time-equivalent core from the GSNI core store and Micha Ruhl (Trinity) has contributed bulk and trace element analyses.
Impact Two studies published (Henehan et al., 2019; Vervoort et al., 2019). Two manuscripts in prep (one led by me, one led by St Andrews-based PhD student).
Start Year 2015
 
Description Paleoocean acidification/palaeo-pH reconstruction 
Organisation University of St Andrews
Country United Kingdom 
Sector Academic/University 
PI Contribution I have co-supervised 1 PhD student and 3 related undergraduate/masters students from St. Andrews on their thesis projects. I took these students into the field in successive summers and to the Geological Survey of Northern Ireland. We logged a Triassic-Jurassic section and collected samples of earliest Jurassic oysters to produce the first paleo-pH reconstruction from the end-Triassic extinction interval. I have analyzed Earth system model experiments to interpret these records. Separately, my PhD student and I have contributed towards earth system model experimental design and model output interpretation for a study investigating the effects of CO2 emissions rate on the inferred severity and carbon source for paleoocean acidification events. Published as Vervoort et al., 2019.
Collaborator Contribution James Rae, St. Andrews, is co-supervised the three undergraduate/master's students and together they have produced the boron isotope reconstructions for the end-Triassic event. We have presented this work at the Lyell meeting at the Geological Society of London, at Goldschmidt, and at EGU. Sandra Kirtland Turner, UC Riverside, performed earth system modelling on the relationship between emissions rate and acidification intensity. Kirsty Edgar, University of Birmingham, has calculated foram accumulation rates to inform the interpretation of the Earth System modelling output. Rob Raine has done sedimentary logging of a new time-equivalent core from the GSNI core store and Micha Ruhl (Trinity) has contributed bulk and trace element analyses.
Impact Two studies published (Henehan et al., 2019; Vervoort et al., 2019). Two manuscripts in prep (one led by me, one led by St Andrews-based PhD student).
Start Year 2015
 
Description Sediment modelling carbonate saturation state 
Organisation Camborne School of Mines
Country United Kingdom 
Sector Academic/University 
PI Contribution Designing and running sediment model experiments to determine how bottom water conditions on shelves, which are known to have varied over geological time (e.g. saturation state and other solute concentrations) affect porewater carbonate saturation state development. Re-evaluation of sulfate reduction and bottom-water anoxia, arguably the most popular inferred mechanisms of authigenic carbonate development in the geological literature, as feasible promoters of carbonate supersaturation. Designing, running, and analyzing sediment model experiments to determine where porewater supersaturation is most favored. PhD student Hazel Vallack (University of Bristol, co-supervised with Sandra Arndt (University Libre Bruxelles), Fiona Whitaker (University of Bristol), and Steve Hesselbo (Camborne School of Mines)) now running sediment models to assess the effects of organic matter quality (both age and heterogeneity) on porewater saturation state development. With Hazel, we have compiled geological literature about authigenic carbonate production through geologic time and the metabolic pathways to which carbonate precipitation was ascribed. Commenced addition of C isotopes to model code. Development of plotting scripts to visualize, analyze, and communicate the model results.
Collaborator Contribution Sandra Arndt and PhD student Philip Pika (University of Bristol) have also run sediment model experiments relating organic matter quality and organic carbon degradation rates.
Impact Several conference presentations and 2 summers teaching to the International Geobiology Summer Course on the early modelling results have resulted so far. In the second year lecturing on the International Geobiology Course, I debuted a new hands on modelling course to the students in which they learned how to conceive and execute model-testable hypotheses related to the development of authigenic carbonate. One paper is in prep. currently and a further paper adding isotope tracers to the model is underway.
Start Year 2014
 
Description Sediment modelling carbonate saturation state 
Organisation University Libre Bruxelles (Université Libre de Bruxelles ULB)
Department Department Geoscience, Environment & Society
Country Belgium 
Sector Academic/University 
PI Contribution Designing and running sediment model experiments to determine how bottom water conditions on shelves, which are known to have varied over geological time (e.g. saturation state and other solute concentrations) affect porewater carbonate saturation state development. Re-evaluation of sulfate reduction and bottom-water anoxia, arguably the most popular inferred mechanisms of authigenic carbonate development in the geological literature, as feasible promoters of carbonate supersaturation. Designing, running, and analyzing sediment model experiments to determine where porewater supersaturation is most favored. PhD student Hazel Vallack (University of Bristol, co-supervised with Sandra Arndt (University Libre Bruxelles), Fiona Whitaker (University of Bristol), and Steve Hesselbo (Camborne School of Mines)) now running sediment models to assess the effects of organic matter quality (both age and heterogeneity) on porewater saturation state development. With Hazel, we have compiled geological literature about authigenic carbonate production through geologic time and the metabolic pathways to which carbonate precipitation was ascribed. Commenced addition of C isotopes to model code. Development of plotting scripts to visualize, analyze, and communicate the model results.
Collaborator Contribution Sandra Arndt and PhD student Philip Pika (University of Bristol) have also run sediment model experiments relating organic matter quality and organic carbon degradation rates.
Impact Several conference presentations and 2 summers teaching to the International Geobiology Summer Course on the early modelling results have resulted so far. In the second year lecturing on the International Geobiology Course, I debuted a new hands on modelling course to the students in which they learned how to conceive and execute model-testable hypotheses related to the development of authigenic carbonate. One paper is in prep. currently and a further paper adding isotope tracers to the model is underway.
Start Year 2014
 
Description Sediment modelling carbonate saturation state 
Organisation University of Bristol
Department Faculty of Social Science and Law
Country United Kingdom 
Sector Academic/University 
PI Contribution Designing and running sediment model experiments to determine how bottom water conditions on shelves, which are known to have varied over geological time (e.g. saturation state and other solute concentrations) affect porewater carbonate saturation state development. Re-evaluation of sulfate reduction and bottom-water anoxia, arguably the most popular inferred mechanisms of authigenic carbonate development in the geological literature, as feasible promoters of carbonate supersaturation. Designing, running, and analyzing sediment model experiments to determine where porewater supersaturation is most favored. PhD student Hazel Vallack (University of Bristol, co-supervised with Sandra Arndt (University Libre Bruxelles), Fiona Whitaker (University of Bristol), and Steve Hesselbo (Camborne School of Mines)) now running sediment models to assess the effects of organic matter quality (both age and heterogeneity) on porewater saturation state development. With Hazel, we have compiled geological literature about authigenic carbonate production through geologic time and the metabolic pathways to which carbonate precipitation was ascribed. Commenced addition of C isotopes to model code. Development of plotting scripts to visualize, analyze, and communicate the model results.
Collaborator Contribution Sandra Arndt and PhD student Philip Pika (University of Bristol) have also run sediment model experiments relating organic matter quality and organic carbon degradation rates.
Impact Several conference presentations and 2 summers teaching to the International Geobiology Summer Course on the early modelling results have resulted so far. In the second year lecturing on the International Geobiology Course, I debuted a new hands on modelling course to the students in which they learned how to conceive and execute model-testable hypotheses related to the development of authigenic carbonate. One paper is in prep. currently and a further paper adding isotope tracers to the model is underway.
Start Year 2014
 
Description Sediment modelling carbonate saturation state 
Organisation University of Bristol
Department School of Geographical Sciences
Country United Kingdom 
Sector Academic/University 
PI Contribution Designing and running sediment model experiments to determine how bottom water conditions on shelves, which are known to have varied over geological time (e.g. saturation state and other solute concentrations) affect porewater carbonate saturation state development. Re-evaluation of sulfate reduction and bottom-water anoxia, arguably the most popular inferred mechanisms of authigenic carbonate development in the geological literature, as feasible promoters of carbonate supersaturation. Designing, running, and analyzing sediment model experiments to determine where porewater supersaturation is most favored. PhD student Hazel Vallack (University of Bristol, co-supervised with Sandra Arndt (University Libre Bruxelles), Fiona Whitaker (University of Bristol), and Steve Hesselbo (Camborne School of Mines)) now running sediment models to assess the effects of organic matter quality (both age and heterogeneity) on porewater saturation state development. With Hazel, we have compiled geological literature about authigenic carbonate production through geologic time and the metabolic pathways to which carbonate precipitation was ascribed. Commenced addition of C isotopes to model code. Development of plotting scripts to visualize, analyze, and communicate the model results.
Collaborator Contribution Sandra Arndt and PhD student Philip Pika (University of Bristol) have also run sediment model experiments relating organic matter quality and organic carbon degradation rates.
Impact Several conference presentations and 2 summers teaching to the International Geobiology Summer Course on the early modelling results have resulted so far. In the second year lecturing on the International Geobiology Course, I debuted a new hands on modelling course to the students in which they learned how to conceive and execute model-testable hypotheses related to the development of authigenic carbonate. One paper is in prep. currently and a further paper adding isotope tracers to the model is underway.
Start Year 2014
 
Description Triassic-Jurassic paleoclimate/carbonate record 
Organisation European Institute for Marine Studies (IUEM)
Country France 
Sector Academic/University 
PI Contribution I provided expertise in carbonate geochemistry, carbonate petrography, the end-Triassic mass extinction and associated carbon cycle perturbations which have so far resulted in 4 publications led by Yadira Ibarra from Stanford (Ibarra et al., 2014;2015;2016) and Frank Corsetti from USC (Corseti et al., 2015), two of which were journal cover stores (Ibarra et al., 2015, Corsetti et al., 2015). I have facilitated a new partnership between Victoria Petryshyn (formerly UCLA, IUEM, now USC) and Dan Lunt/Alex Farnsworth (University of Bristol) in which I designed a novel model-data intercomparison to interpret paleoclimate records from carbonate stromatolites with unknown temporal scale. One co-first author paper in revision. Work presented at Goldschmidt 2017 and Lyell meeting 2018.
Collaborator Contribution Yadira Ibarra (formerly Stanford, now SFSU) and Frank Corsetti (USC) conducted carbonate petrology and stable isotope geochemistry. Victoria Petryshyn conducted clumped isotope and trace element geochemistry in conjunction with Aradhna Tripati (UCLA), Stefan Lalonde, and Pierre Sansjofre (IUEM) , Alex Farnsworth and Dan Lunt provided paleoclimate modeling.
Impact 4 manuscripts published so far, 1 further manuscript in revision. I have additionally presented this work at several recent meetings including Goldschmidt (2017) and the Geological Society's Lyell Meeting (2018). This work is multidisciplinary and includes traditional geology, isotope geochemistry, and climate modelling.
Start Year 2014
 
Description Triassic-Jurassic paleoclimate/carbonate record 
Organisation San Francisco State University
Country United States 
Sector Academic/University 
PI Contribution I provided expertise in carbonate geochemistry, carbonate petrography, the end-Triassic mass extinction and associated carbon cycle perturbations which have so far resulted in 4 publications led by Yadira Ibarra from Stanford (Ibarra et al., 2014;2015;2016) and Frank Corsetti from USC (Corseti et al., 2015), two of which were journal cover stores (Ibarra et al., 2015, Corsetti et al., 2015). I have facilitated a new partnership between Victoria Petryshyn (formerly UCLA, IUEM, now USC) and Dan Lunt/Alex Farnsworth (University of Bristol) in which I designed a novel model-data intercomparison to interpret paleoclimate records from carbonate stromatolites with unknown temporal scale. One co-first author paper in revision. Work presented at Goldschmidt 2017 and Lyell meeting 2018.
Collaborator Contribution Yadira Ibarra (formerly Stanford, now SFSU) and Frank Corsetti (USC) conducted carbonate petrology and stable isotope geochemistry. Victoria Petryshyn conducted clumped isotope and trace element geochemistry in conjunction with Aradhna Tripati (UCLA), Stefan Lalonde, and Pierre Sansjofre (IUEM) , Alex Farnsworth and Dan Lunt provided paleoclimate modeling.
Impact 4 manuscripts published so far, 1 further manuscript in revision. I have additionally presented this work at several recent meetings including Goldschmidt (2017) and the Geological Society's Lyell Meeting (2018). This work is multidisciplinary and includes traditional geology, isotope geochemistry, and climate modelling.
Start Year 2014
 
Description Triassic-Jurassic paleoclimate/carbonate record 
Organisation Stanford University
Department School of Earth, Energy and Environmental Sciences
Country United States 
Sector Academic/University 
PI Contribution I provided expertise in carbonate geochemistry, carbonate petrography, the end-Triassic mass extinction and associated carbon cycle perturbations which have so far resulted in 4 publications led by Yadira Ibarra from Stanford (Ibarra et al., 2014;2015;2016) and Frank Corsetti from USC (Corseti et al., 2015), two of which were journal cover stores (Ibarra et al., 2015, Corsetti et al., 2015). I have facilitated a new partnership between Victoria Petryshyn (formerly UCLA, IUEM, now USC) and Dan Lunt/Alex Farnsworth (University of Bristol) in which I designed a novel model-data intercomparison to interpret paleoclimate records from carbonate stromatolites with unknown temporal scale. One co-first author paper in revision. Work presented at Goldschmidt 2017 and Lyell meeting 2018.
Collaborator Contribution Yadira Ibarra (formerly Stanford, now SFSU) and Frank Corsetti (USC) conducted carbonate petrology and stable isotope geochemistry. Victoria Petryshyn conducted clumped isotope and trace element geochemistry in conjunction with Aradhna Tripati (UCLA), Stefan Lalonde, and Pierre Sansjofre (IUEM) , Alex Farnsworth and Dan Lunt provided paleoclimate modeling.
Impact 4 manuscripts published so far, 1 further manuscript in revision. I have additionally presented this work at several recent meetings including Goldschmidt (2017) and the Geological Society's Lyell Meeting (2018). This work is multidisciplinary and includes traditional geology, isotope geochemistry, and climate modelling.
Start Year 2014
 
Description Triassic-Jurassic paleoclimate/carbonate record 
Organisation University of Bristol
Department School of Geographical Sciences
Country United Kingdom 
Sector Academic/University 
PI Contribution I provided expertise in carbonate geochemistry, carbonate petrography, the end-Triassic mass extinction and associated carbon cycle perturbations which have so far resulted in 4 publications led by Yadira Ibarra from Stanford (Ibarra et al., 2014;2015;2016) and Frank Corsetti from USC (Corseti et al., 2015), two of which were journal cover stores (Ibarra et al., 2015, Corsetti et al., 2015). I have facilitated a new partnership between Victoria Petryshyn (formerly UCLA, IUEM, now USC) and Dan Lunt/Alex Farnsworth (University of Bristol) in which I designed a novel model-data intercomparison to interpret paleoclimate records from carbonate stromatolites with unknown temporal scale. One co-first author paper in revision. Work presented at Goldschmidt 2017 and Lyell meeting 2018.
Collaborator Contribution Yadira Ibarra (formerly Stanford, now SFSU) and Frank Corsetti (USC) conducted carbonate petrology and stable isotope geochemistry. Victoria Petryshyn conducted clumped isotope and trace element geochemistry in conjunction with Aradhna Tripati (UCLA), Stefan Lalonde, and Pierre Sansjofre (IUEM) , Alex Farnsworth and Dan Lunt provided paleoclimate modeling.
Impact 4 manuscripts published so far, 1 further manuscript in revision. I have additionally presented this work at several recent meetings including Goldschmidt (2017) and the Geological Society's Lyell Meeting (2018). This work is multidisciplinary and includes traditional geology, isotope geochemistry, and climate modelling.
Start Year 2014
 
Description Triassic-Jurassic paleoclimate/carbonate record 
Organisation University of California, Los Angeles (UCLA)
Department Department of Earth, Planetary and Space Sciences
Country United States 
Sector Academic/University 
PI Contribution I provided expertise in carbonate geochemistry, carbonate petrography, the end-Triassic mass extinction and associated carbon cycle perturbations which have so far resulted in 4 publications led by Yadira Ibarra from Stanford (Ibarra et al., 2014;2015;2016) and Frank Corsetti from USC (Corseti et al., 2015), two of which were journal cover stores (Ibarra et al., 2015, Corsetti et al., 2015). I have facilitated a new partnership between Victoria Petryshyn (formerly UCLA, IUEM, now USC) and Dan Lunt/Alex Farnsworth (University of Bristol) in which I designed a novel model-data intercomparison to interpret paleoclimate records from carbonate stromatolites with unknown temporal scale. One co-first author paper in revision. Work presented at Goldschmidt 2017 and Lyell meeting 2018.
Collaborator Contribution Yadira Ibarra (formerly Stanford, now SFSU) and Frank Corsetti (USC) conducted carbonate petrology and stable isotope geochemistry. Victoria Petryshyn conducted clumped isotope and trace element geochemistry in conjunction with Aradhna Tripati (UCLA), Stefan Lalonde, and Pierre Sansjofre (IUEM) , Alex Farnsworth and Dan Lunt provided paleoclimate modeling.
Impact 4 manuscripts published so far, 1 further manuscript in revision. I have additionally presented this work at several recent meetings including Goldschmidt (2017) and the Geological Society's Lyell Meeting (2018). This work is multidisciplinary and includes traditional geology, isotope geochemistry, and climate modelling.
Start Year 2014
 
Description Triassic-Jurassic paleoclimate/carbonate record 
Organisation University of Southern California
Country United States 
Sector Academic/University 
PI Contribution I provided expertise in carbonate geochemistry, carbonate petrography, the end-Triassic mass extinction and associated carbon cycle perturbations which have so far resulted in 4 publications led by Yadira Ibarra from Stanford (Ibarra et al., 2014;2015;2016) and Frank Corsetti from USC (Corseti et al., 2015), two of which were journal cover stores (Ibarra et al., 2015, Corsetti et al., 2015). I have facilitated a new partnership between Victoria Petryshyn (formerly UCLA, IUEM, now USC) and Dan Lunt/Alex Farnsworth (University of Bristol) in which I designed a novel model-data intercomparison to interpret paleoclimate records from carbonate stromatolites with unknown temporal scale. One co-first author paper in revision. Work presented at Goldschmidt 2017 and Lyell meeting 2018.
Collaborator Contribution Yadira Ibarra (formerly Stanford, now SFSU) and Frank Corsetti (USC) conducted carbonate petrology and stable isotope geochemistry. Victoria Petryshyn conducted clumped isotope and trace element geochemistry in conjunction with Aradhna Tripati (UCLA), Stefan Lalonde, and Pierre Sansjofre (IUEM) , Alex Farnsworth and Dan Lunt provided paleoclimate modeling.
Impact 4 manuscripts published so far, 1 further manuscript in revision. I have additionally presented this work at several recent meetings including Goldschmidt (2017) and the Geological Society's Lyell Meeting (2018). This work is multidisciplinary and includes traditional geology, isotope geochemistry, and climate modelling.
Start Year 2014
 
Description Introduction to sediment modelling 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Each summer approx. 16 PhD students attend the highly selective international geobiology summer course held in Southern California. In 2016 I returned to the course as a lecturer and developed a short module to teach the students (data-focussed geologists and biologists) how to design modelling experiments and formulate model-testable hypotheses concerning sediment biogeochemical modelling. The students reported a strong interest in learning more about modelling and collaborating with modelers (including myself) in the future.
Year(s) Of Engagement Activity 2016
 
Description Lecturer: International Geobiology Summer Course 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Each summer approx. 16 PhD students attend the highly selective international geobiology summer course held in Southern California. They learn field and lab techniques for geobiological research. I was added as a lecturer to strengthen the modelling and carbonate chemistry components of the course.
Year(s) Of Engagement Activity 2014
 
Description Public Lecture - Teme Valley Geological Society 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Public/other audiences
Results and Impact Talk delievered to the Teme Valley Geological Society (a local society for amateur geologists and enthusiasts featuring some of the climate records I am pulling from local microbially-influenced Mesozoic deposits. Audience asked many interesting follow-up questions - particularly in relation to the local geology and climate history.
Year(s) Of Engagement Activity 2018
 
Description Public lecture - Lapworth Museum (Birmingham) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact I gave an hour long public lecture as part of the Lapworth Museum public lecture series. The audience was general public, students, and staff at the University of Birmingham. The talk centered on the reconstruction of local climate history across a mass extinction using a local carbonate microbialite. The audience questions focused largely on the causes of mass extinctions and the ways in which climate models and paleoclimate data can be compared.
Year(s) Of Engagement Activity 2016
 
Description Public lecture: Bath Geological Society 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact I gave an hour long public lecture to the Bath Geological Society about a local carbonate microbialite, the Cotham Marble, and the Triassic-Jurassic paleoenvironmental and paleoclimate records we are extracting from it. Many people had questions about topics ranging from local geology, to the end-Triassic mass extinction, to microbial processes in sediments, and to the T-J global carbon cycle perturbation. I was tentatively invited back to give a further lecture about paleoocean acidification at some time in the future and many people inquired about how to see this microbialite in the field.
Year(s) Of Engagement Activity 2016