FAPESP Marine ferromanganese deposits - a major resource of E-tech elements (MarineE-tech)

Lead Research Organisation: National Oceanography Centre
Department Name: Science and Technology

Abstract

Minerals are essential for economic development, the functioning of society and maintaining our quality of life. Consumption of most raw materials has increased steadily since World War II, and demand is expected to continue to grow in response to the burgeoning global population and economic growth, especially in Brazil, Russia, India and China (BRIC) and other emerging economies. We are also using a greater variety of metals than ever before. New technologies such as those required for modern communication and computing and to produce clean renewable, low-carbon energy require considerable quantities of many metals. In the light of these trends there is increasing global concern over the long-term availability of secure and adequate supplies of the minerals and metals needed by society. Of particular concern are 'critical' raw materials (E-tech element), so called because of their growing economic importance and essential contribution to emerging 'green' technologies, yet which have a high risk of supply shortage.

The following E-tech elements are considered to be of highest priority for research: cobalt, tellurium, selenium, neodymium, indium, gallium and the heavy rare earth elements. Some of these E-tech elements are highly concentrated in seafloor deposits (ferromanganese nodules and crusts), which constitute the most important marine metal resource for future exploration and exploitation. For example, the greatest levels of enrichment of Tellurium are found in seafloor Fe-Mn crusts encrusting some underwater mountains. Tellurium is a key component in the production of thin film solar cells, yet is prone to security of supply concerns because of projected increased demand resulting from the widespread deployment of photovoltaic technologies; low recycling rates; and its production as a by-product from copper refining. As a result, it is vital to assess alternative sources of supply of tellurium and the other E-tech elements, the largest source of which is held as seafloor mineral deposits.

Our research programme aims to improve understanding of E-tech element concentration in seafloor mineral deposits, which are considered the largest yet least explored source of E-tech elements globally. Our research will focus on two key aspects: The formation of the deposits, and reducing the impacts resulting from their exploitation. Our primarily focus is on the processes controlling the concentration of the deposits and their composition at a local scale (10's to 100's square km). These will involve data gathering by robotic vehicles across underwater mountains and small, deep-sea basins off the coast of North Africa and Brazil. By identifying the processes that result in the highest grade deposits, we aim to develop a predictive model for their occurrence worldwide. We will also address how to minimise the environmental impacts of mineral exploitation.

Seafloor mining will have an impact on the environment. It can only be considered a viable option if it is environmentally sustainable. By gathering ecological data and experimenting with underwater clouds of dust that simulate those generated by mining activity, we will explore of extent of disturbance by seafloor mineral extraction. Metal extraction from ores is traditionally very energy consuming. To reduce the carbon footprint of metal extraction we will explore the novel use of organic solvents, microbes and nano-materials. An important outcome of the work will be to engage with the wider community of stakeholders and policy makers on the minimising the impacts of seafloor mineral extraction at national and international levels. This engagement will help inform policy on the governance and management of seafloor mineral exploitation.

Planned Impact

FAPESP Marine ferromanganese deposits -a major resource of E-tech elements (MarineE-tech)

Economic competitiveness:
MarineE-tech addresses a new supply source of E-tech elements such as tellurium, cobalt and the heavy rare earth elements from deep-sea ferromagnesian oxide deposits. These mineral deposits constitute the single largest resource of E-tech element on the planet. MarineE-tech will pursue this research through engagement with the off-shore survey and mining engineering industries, as well as academic researchers in biology, geology, geophysics, oceanography, micro-biology and marine chemistry in across the UK and in Brazil. Only through a holistic multidisciplinary approach that spans both local and trans-ocean scales are we able to access the potential of this resource and the environmental impacts arising from its future exploitation.

For example, tellurium is enriched in ferromagnesian oxide crusts on the deep ocean floor by almost 10,000 times compared with continental crust. It is one of the E-tech elements that are considered critical to the emerging high-tech industries and the 'green' economy. For example, the renewable energy sector identifies a sufficient and secure supply of tellurium as the single largest barrier in its development and production of CdTe photovoltaic devices. Currently, the UK and European economies are strongly dependent on imports of strategic E-tech metals such as tellurium from politically and/or economically unstable countries (e.g. Zaire); a fact recognized by the European Commission in the priority given to the investigation of strategic mineral resources in European territories, including the seabed (European Commission, Horizons 2020). Other E-tech elements, concentrated in ferromagnesian oxide deposits, are similarly considered critical to modern economies yet also have supply limitations. As a result, marine sources of e-tech elements are increasingly being considered. For example, a recent report by the European Commission (EC) estimates that global annual turnover of marine mineral mining is expected to grow from virtually nothing to Euro 10 billion by 2030. This economic potential brings the relevance and impact of the research we are proposing into sharper focus than ever before.

Environmental protection:
MarineE-tech is also aimed at assessing potential environmental impacts to enable any future development of marine resources to be sustainable and responsible. For example, our research will provide new and important information on the composition and evolution of sea floor metal-rich crusts and hence their potential environmental impact on adjacent ecosystems if they are mined. This work will be contributed in full by leading UK off-shore environmental industry partners (MESL-Gardline Ltd.) with help from the only UK underwater mining engineering company (SMD Ltd.). The results of this work will help reduce the environmental impact of seafloor mining through better design of extraction machinery, giving an economic advantage to this UK engineering industry. It will also give the UK company MESL-Gardline Ltd. valuable experience in this emerging field, imparting further advantage to UK industry.

Ocean Stewardship and Governance:
MarineE-tech will also enable informed decisions by non-governmental organisations and policy makers scrutinising the sustainability of future extraction of metal rich crusts on the sea floor. For example, this research is identified as a priority in the new ten-year science plan for InterRidge, which has observer status at United Nations International Seabed Authority, and of which PI Murton was chair (20010-2013). The importance of the environmental impacts is recognised by the current EU programmes on assessing potential environmental impact of deep-sea mining as well as in current calls under the EC Horizons 2020 research framework.

Publications

10 25 50
 
Description The outcome of this research has led to widespread community and stakeholder engagement leading to industrial sponsorship and co-funding of later deep-sea minerals research.
First Year Of Impact 2022
Impact Types Societal,Economic