SWEET:Super-Warm Early Eocene Temperatures and climate: understanding the response of the Earth to high CO2 through integrated modelling and data

Lead Research Organisation: Imperial College London
Department Name: Earth Science and Engineering

Abstract

The Earth's climate is currently changing rapidly, primarily due to emissions of greenhouse gases caused by human industrialisation. These emissions are projected to increase through this century, and under some scenarios atmospheric carbon dioxide (CO2) concentrations could reach more than 1000 parts per million (ppm) by the year 2100, compared with 280 ppm prior to industrialisation. In order to predict the sociological, environmental, and economic impacts of such scenarios, and thus to better prepare for them, the only tool at our disposal is climate modelling. In order to assess our confidence in predictions from climate models, they are routinely tested under conditions of known climate. However, this testing (and associated tuning of the models) is almost exclusively carried out under modern climate conditions, and relative to recently observed climate change, for which CO2 concentrations are less than 400 ppmv. As such, our state-of-the-art climate models have never been tested under the high CO2, super-warm climate conditions to which they are primarily applied, and upon which major policy decisions are made.

However, there exist time periods in Earth's deeper past (for example the Eocene, about 50 million years ago) when CO2 concentrations were similar to those expected by the end of this century; but climatological information from these time periods is currently sparse and is associated with large uncertainties, and the exact concentrations of CO2 are only poorly known. Recent changes in our understanding of how the geological record preserves climate signals, and developments in laboratory techniques, mean that for the first time there exists a new and exciting opportunity to remedy this situation and provide a much-needed evaluation of our very latest climate models in a super-warm world.

In SWEET, we will apply these emerging techniques, and develop new methodologies and tools, to produce a global dataset of Eocene temperatures. Coupled with new and high-fidelity reconstructions of Eocene CO2 concentrations, and state-of-the-art maps of the 'palaeogeograpy' (continental positions, mountain ranges, ocean depths etc.), we will use this dataset to test a state-of-the art climate model under high atmospheric CO2, Eocene conditions. The model, UKESM, is identical to that being used by the UK Met Office in the international 'CMIP6' project, which itself will be the primary input to the next Intergovernmental Panel on Climate Change (IPCC) assessment report. We will also use our data and additional model simulations (running at high spatial resolution) to investigate the relative importance of the various mechanisms which determine the response of the Earth system to high CO2 and to changes in palaeogeography.

A characteristic of SWEET is that we will take full account of uncertainties in the geological data and the modelling, and our model-data comparisons will be underpinned by a statistical framework which incorporates these uncertainties. We will also adopt a 'multi-proxy' approach by using several independent geological archives to reconstruct temperature. For one of these archives, namely the oxygen isotopic composition of the fossilised shells of microscopic marine creatures from the Eocene, we will apply a particularly innovative approach which will enable us to 'resurrect' previously discredited data, by using an extremely fine-scale 'ion probe' to investigate how these isotopic signatures of past climate change are recorded in individual fossils.

SWEET has strong links to UK Met Office, and to the international DeepMIP project, which is part of the 'Palaeoclimate Modelling Intercomparison Project', itself part of CMIP6. We expect our results to feed into the next IPCC assessment reports and therefore to ultimately inform policy.

Planned Impact

Our exciting and innovative Impact Plan has three components, which are focussed on public outreach and engagement with policy-makers through the Intergovernmental Policy on Climate Change (IPCC).

Our public outreach will be centred on the SWEET project website, which we will promote via the participating universities' extensive media contacts (both traditional media and social media). Through the website we will produce regular blog postings from the postdoctoral researchers and the PhD student, charting progress through the project. The innovation here is that in addition to highlighting exciting new scientific results, the blogs will also focus on the process of actually carrying out science, including highs and lows, excitements and disappointments. As such, they will document the complete scientific process from a human perspective, and it is our hope that this will inspire undergraduates and schoolchildren to engage with science, in particular those who otherwise may have viewed science and scientists as unapproachable.

Another central aspect of our engagement with the general public will be via the first ever (to our knowledge) climate model simulations of the world of 'Game of Thrones' - a hugely popular book and television series (single episodes of which attract viewing figures in the 10's of millions). We previously had great success with a similar exercise as part of the Impact Plan of a previous NERC grant, in which we simulated the climate of J.R.R. Tolkien's Middle Earth (and which received a total of 100,000 Tweets/reTweets in the first 8 hours alone), and we anticipate that this new activity will have a similar, if not greater, global impact. The primary aim is to excite the general public about climate science and climate models, and to emphasise that climate models have the flexibility, because of their grounding in fundamental scientific principles, to be applied beyond just the modern Earth. As such, we will tackle the commonly held myth that climate models are just constructed for and tuned, to, the modern world. Note that we do not request any resource to carry out this activity.

Finally, we will aim to communicate our findings to policymakers via their inclusion in forthcoming reports of the IPCC (AR6, and AR7 if appropriate; note that five of the SWEET team were Contributing Authors to AR5). The work in SWEET represents a step-change in terms of evaluation of deep-time warm climates compared with what was presented in AR5. As such, we are confident that our work will be included in AR6. However we will facilitate this by sending copies of our papers to the appropriate IPCC authors, and by presenting our work at international conferences.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
NE/P019080/1 01/10/2017 30/09/2023
2498851 Studentship NE/P019080/1 01/10/2019 30/06/2023 Phoebe Ross
 
Description The early Eocene Climatic Optimum (EECO) (~49-53 Ma) presents an ideal test bed to explore climate interactions in a high CO2 world (pCO2 > 1000 ppm). We investigated deep ocean circulation during the EECO, employing the neodymium (Nd) isotope fingerprint of water masses as reconstructed using fish debris and foraminifera, at sixteen global DSDP, ODP and IODP sites. Our data reveal a distinct dichotomy between the Atlantic and the Pacific Oceans in both average Nd isotope composition and time-dependent variability. The results allow us to interrogate whether separate, Southern Ocean deep water sources existed during the EECO, as well as potential export of deep waters from the North Atlantic / North Pacific. In conjunction with existing model runs for the EECO, our new data provide key insights into the thermohaline circulation during greenhouse climates.
Exploitation Route In SWEET, we reconstruct the warmth and drivers of the "early Eocene" greenhouse climate, and use this to test a state-of-the-art climate model, and gain an understanding of the climate processes that led to the warmth. The project is building model capability using UKESM and Eocene model simulations are currently being configured. SWEET results have been prominently included in the IPCC AR6.
Sectors Environment

URL https://www.deepmip.org/sweet/
 
Description Lead PI Dan Lunt is a Lead Author on the Intergovernmental Panel on Climate Change sixth assessment report (IPCC AR6).
First Year Of Impact 2021
Sector Environment
Impact Types Societal,Policy & public services

 
Description Contribution to the next IPCC report (palaeclimate) via Dan Lunt.
Geographic Reach Multiple continents/international 
Policy Influence Type Membership of a guideline committee
URL https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
 
Description Grantham Briefing paper
Geographic Reach National 
Policy Influence Type Implementation circular/rapid advice/letter to e.g. Ministry of Health
URL https://www.imperial.ac.uk/grantham/publications/briefing-papers/what-ancient-climates-tell-us-about...
 
Description Major and trace element analysis 
Organisation Open University
Country United Kingdom 
Sector Academic/University 
PI Contribution Analysis of fish teeth for their Nd isotopic composition.
Collaborator Contribution Analysis of fish teeth for their major and trace element composition.
Impact Numerous publications across a range of projects.
Start Year 2013
 
Description Great Exhibition Road Festival - Blast from the Past 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact The Great Exhibition Road Festival is a new three day celebration of curiosity, discovery and exploration that brings together science and the arts in the spirit of the Great Exhibition of 1851.We had a stand to bring the science done by the International Ocean Discovery Programme (IODP) closer to a general audience. From climate change, over earthquakes, to impacts that killed the dinosaurs. We had truly fantastic interactions with countless member of the public, young and old, scientifically-inclined and intrigued. The festival was visited by 60,000 people and our stand was on the main road.
Year(s) Of Engagement Activity 2019
URL https://www.imperial.ac.uk/news/193776/great-exhibition-road-festival-2019-earns/
 
Description IODP planning workshop, Sydney 2017 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact Australasian IODP Planning Workshop to develop proposals for research expeditions for the next phase of IODP drilling. Co-chaired the climate and ocean theme (plenary presentation and guidance and summary of discussions).
Year(s) Of Engagement Activity 2017
URL https://www.iodp.org/australasian-workshop-report-june-2017
 
Description MAGIC Elements 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact Hundreds of under-12s visited the Imperial Festival stand on MAGIC Elements with their parents. They dressed up as scientists, learned about elements and isotopes, and even about how Antarctica once was a continent with palm trees at its shorelines.
Year(s) Of Engagement Activity 2018
URL https://www.imperial.ac.uk/news/185986/imperial-festival-transforms-under-12s-into-mini/
 
Description Media contact Grantham 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact Part of a small group of Grantham affiliates that helps with media requests. My expertise is in the are of palaeoclimate and Antarctic ice sheets
Year(s) Of Engagement Activity 2016,2017,2018,2019
 
Description PROCEED workshop 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Study participants or study members
Results and Impact >50 international scientist attended the PROCEED workshop (Expanding Frontiers of Scientific Drilling) in Vienna. I co-led the workshop discussion on expanding IODP science in the context of the IPCC.
Year(s) Of Engagement Activity 2019
 
Description Podcast interview 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact 1 hour interview for the forecast, a podcast about climate science and climate scientists. Long format interviews with Nature's editor for climate science, Michael White.
Year(s) Of Engagement Activity 2016
URL http://forecastpod.org/?s=tina+van+de+Flierdt
 
Description Podcast interview Dan Lunt 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact Lead PI Dan Lunt gave a one hour interview for forecast, a podcast about climate science and climate scientists. Long format interviews with Nature's editor for climate science, Michael White.
Year(s) Of Engagement Activity 2017
URL http://forecastpod.org/index.php/2017/12/27/climate-westeros-dan-lunt/
 
Description Royal Meterological Society meeting - the Pliocene 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact Stimulating meeting to highlight the relevance of the Pliocene climate to our own future. Well attended. Sparked questions and discussion.
Year(s) Of Engagement Activity 2019
URL https://www.rmets.org/event/pliocene-last-time-earth-had-400-ppm-atmospheric-co2
 
Description Royal Meterological Society meeting - the Pliocene 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Media (as a channel to the public)
Results and Impact Media briefing ahead of the Pliocene meeting organised by the Royal Meterological Society and the Grantham Institute for Climate and the Environment and hosted by the Science Media Centre.
Year(s) Of Engagement Activity 2019
 
Description Short virtual course - isotopes in ocean earth and environment research 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Virtual summer school - >100 people from all around the world attended and asked questions about isotopes in the ocean
Year(s) Of Engagement Activity 2021
 
Description Sutton Summer School 2022 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Schools
Results and Impact Engagement talk about Earth Science, university, and Antarctica.
Year(s) Of Engagement Activity 2022
URL https://summerschools.suttontrust.com/
 
Description Twitter 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact Tweets about climate change, Antarctica, women in science, STEM related topics and (Earth) Science in general.
Year(s) Of Engagement Activity 2014,2015,2016,2017,2018,2019,2020