Towards a marginal Arctic sea ice cover

Lead Research Organisation: National Oceanography Centre
Department Name: Science and Technology

Abstract

Recent observed changes in the Arctic have become a 'poster child' for global climatic changes, particularly because the summer sea ice extent has shrunk rapidly over the past 35 years. This retreat of the sea ice has led to growth of trans-Arctic shipping and plans to extract minerals and fossil fuels from the ocean floor.

The latest assessment of the Intergovernmental Panel on Climate Change (IPCC) concluded that it was likely that the Arctic would become reliably ice-free by 2050 assuming greenhouse gas emissions continue to increase. However, the climate simulations used by the IPCC often fail to realistically capture large scale properties of the Arctic sea ice, such as the extent, variability and recent trends. Therefore, there is a need to improve simulations of Arctic sea ice to provide better understanding of the recent observed changes and credible projections of the future to help assess risks and opportunities and inform important policy decisions about adaptation and mitigation.

Observations of the Arctic have improved in recent years with new satellites measuring sea ice properties from space. These satellites reveal not only that the extent and thickness of the Arctic ice cover is reducing in all seasons but that the Marginal Ice Zone (MIZ), a region of low ice area concentration consisting of a relatively disperse collection of small floes, has grown.

Model projections indicate the MIZ will grow from around 10% to 80% of the summer sea ice cover by 2050, exposing a hitherto relatively quiescent Arctic Ocean to the atmosphere. Nonlinear interactions between the air, ice, and ocean that magnify or diminish change, known as feedbacks, associated with a reduced and marginal sea ice cover will emerge or assume dominance in the coming years. Many of these feedbacks are either entirely absent or inadequately captured in current models. For example, not included is the feedback whereby the creation of smaller floes due to ice melt or breakup under ocean wave stress promotes further lateral melt and propagation of waves deeper into the pack, further enlarging the MIZ. Because existing climate models oversimplify these feedbacks, their utility for understanding and predicting variability and change in the Arctic is compromised. This leads to impairment of climate model accuracy at lower latitudes also, due to errors in meridional atmospheric and oceanic circulations as well as ice export from the Arctic.

We will investigate processes controlling evolution of the MIZ using existing and new observations. We will include physics of wave-ice interaction, ice breakup and melt, and floe collisions into ice, ocean, and climate models. We will use these models, constrained and verified with new observations, to explore feedbacks between the sea ice, ocean, and atmosphere using a series of numerical experiments. We will quantify the impact of the increase in the MIZ on the Arctic physical climate, and explore the processes responsible for the projected loss of Arctic sea ice.

Planned Impact

Arctic sea ice reduction has become a totemic indicator of climate change with impacts on iconic species such as polar bears and the Beluga whale, as well as indigenous human populations. The reduction of Arctic sea ice extent has generated widespread interest with numerous articles in the popular press, radio, television and internet.

Reduction in the sea ice cover is already opening up shipping routes and the potential for oil exploration has generated political statements and actions including, for example, the placement of the Russian flag at the North Pole and Denmark's declaration of sea bed rights up to the North Pole. Lloyd's of London, with Chatham House, published a report called "Arctic Opening" in 2012, with business (including insurance) expansion in mind. In 2014, the PI organised a Royal Society meeting on Arctic sea ice: the evidence, models, and global impacts, which was the Royal Society's most tweeted meeting.

Understanding how and why Arctic sea ice conditions change on decadal timescales is a critical issue facing international governments and business. Improved predictions of Arctic sea ice through scientific research has economic, social and environmental implications. This research brings together broad international expertise in sea ice model development to ensure maximal benefit to sea ice research, modelling and prediction groups.

A major practical impact of this proposal is in the generation of a new sea ice module accounting for marginal ice zone physics in the sea ice component (CICE) of a Global Climate Model (GCM). The CICE sea ice component is used in several GCMs, which include the UK Earth System Model (UKESM), the HadGEM3-GC3 climate model used by the Met Office for contributions to climate projections CMIP6, and the Community Climate System Model (CCSM) at the (US) National Center for Atmospheric Research. The Met Office and Los Alamos National Laboratory are both Project Partners offering in-kind support to help deliver the improvements to sea ice models, and visits are planned for both to ensure maximal usage of the research.

The main direct beneficiaries of the knowledge generated by this project will be:

1. The Met Office and other international modelling groups who will be able to utilise an enhanced and improved sea ice component in their global climate models

2. The international climate research community, including the IPCC, through collaborative analysis of the Arctic system to understand the causes of recent changes

3. Policy makers (such as DECC, DEFRA and FCO) who will have an improved understanding of the risks and opportunities presented by a changing Arctic. This work also has the potential to be used to inform mitigation and adaptation decisions under the UNFCCC climate negotiations.

4. This project will supply part of the physical basis for future prediction systems for the Arctic and Northern Hemisphere mid-latitudes, which will have benefits to the stakeholders such as the oil, gas and mineral extraction industry, trans-Arctic shipping, tourism and indigenous communities. The general public and local communities would also benefit from improved forecasts.

Publications

10 25 50
 
Description Sea ice retreat and opens large, previously ice-covered areas of the Arctic Ocean, to the wind and ocean waves. This necessitates climate and forecasting models that can simulate fragmented sea ice and impacts on the ocean with a greater fidelity for climate predictions, along with growing economic activity in the Polar Oceans. We found that the waves have a substantial local and regional effects on sea ice and ocean in the Arctic and the Southern Oceans, increasing ice break up and melt in the sea ice-covered areas affected by waves, including Marginal Ice Zone (MIZ) in the Arctic and Southern Ocean. Although overall impact of the waves on the trends in sea ice extent and volume is not large in the current climate, the sea ice decline in the both hemispheres may accelerate. Waves are tend to increase in the future climate resulting in the MIZ area is projected to occupy a large fraction of the total declining sea ice cover and the coupled climate feedbacks between the ocean, sea ice and waves may become stronger. We found that these feedback as already started affecting ocean and sea ice mostly through waves stirring the upper ocean and bringing ocean heat to the surface to melt sea ice.
Changes in the sea ice affect upper ocean via stronger ocean eddies: the eddies are to became smaller but more frequent and energetic at the boundary between open water and sea ice supplying extra heat to accelerate ice edge retreat.

Reduction in the Arctic sea ice affects surface ocean with more than two-fold increase in the speed of the ocean currents. The forward projections of the sea ice and waves demonstrated that combined risks to the off-shore industries from the sea ice and waves become large as soon as in 2030s.
Exploitation Route Changes in the Arctic natural environment are occurring faster than elsewhere in the world and require combining expertise in different areas, cross-subject international collaboration and close links between science, engineering and industry. The project findings are important for forecasting, climate modeling, sea ice, oceanographic and atmospheric observational and modelling communities in order to establish requirements for environmental data and forecasts. This will help assess the potential benefits and risks of Arctic maritime operations and improve their safety.

The results form the project were presented at the Cryosphere Pavilion at the UN Climate Change Conference 2019 (COP25, Madrid). (https://
www.youtube.com/watch?v=Q_XZPKyFFME&list=PLu5U7DV5jenUOtkdM6H4qjInPVbB9Fi66?dex=17&t=0s), informed the report for H2020 Blue Action on the
environmental and policy decisions in the Yamal region. https://zenodo.org/record/3341291#.XhcoAxf7QdU and contributed to the topics of the Action Plan (AP) document for the Arctic group WG4 (Predicted Ocean) of the UN Decade of the Ocean (https://www.oceandecade.dk/decade-actions/arctic-action-plan).
Sectors Aerospace, Defence and Marine,Energy,Environment,Leisure Activities, including Sports, Recreation and Tourism,Transport

URL https://doi.org/10.1007/978-3-030-80439-8_12
 
Description Dr Rynders and Dr Aksenov provided NOC input to the sea ice modelling strategic development for EU Marine Environment Services Copernicus (EU IMMERSE/IS ENES3); output: recommendations for sea ice rheology development, Blockley et al., "Sea ice rheology" 2022. Dr Aksenov contributed to the topics of the Action Plan (AP) document for the Arctic group WG4 (Predicted Ocean) of the UN Decade of the Ocean (https://www.oceandecade.dk/decade-actions/arctic- action-plan). Dr Aksenov presented an invited talk Presentation at the UN Climate Change Conference (COP25) in Madrid in Dec 2019 for the Cryosphere Pavilion: "The New Arctic: The impact of change in Arctic Ocean sea ice on marine ecosystems and maritime industries ", featuring wave impact on the environment and industries in the future climate. (https://www.changing-arctic-ocean.ac.uk/science-outputs/arctic-conferences/santiago-climate-change-conference/). Drs Yevgeny Aksenov and Stefanie Rynders presented invited talks at the In International Union of Theoretical and Applied Mechanics (UTAM) Symposium on Physics and Mechanics of Sea Ice in June 2019, addressing impact of wave and ice on the safety in the ice covered areas. (https://doi.org/10.1007/978-3-030-80439-8_12). The initial fundings on the marginal ice zone dynamics contributed to the Year of Polar Prediction Arctic Science Workshop 2019 (https://www.polarprediction.net/meetings-calendar/science-workshops/yopp-arctic-science-workshop/). Stefanie Rynders has delivered a talk "Predicting ocean waves and sea ice and the Polar Oceans" at the meeting held in Helsinki (Finland) in January 2019. Aksenov and Rynders have visited the EU Maritime College ABOA MARE (https://www.aboamare.fi) in Turku (Finland) in January 2019 and discussed the requirement for the environmental data for maritime training using ship bridge simulators, including ice fragmentation and wave information in the Marginal Ice Zones. Contributed to the MCCIP report card: Hwang, B., Aksenov, Y., Blockley, E., Tsamados, M.,. Browne, T., Landy, J.,Stevens, D., Wilkinson, J., Impacts of climate change on Arctic sea ice, The United Kingdom Marine Climate Change Impacts Partnership (MCCIP) 2020. Paper analysis the Arctic navigational risks and environmental safety of the marine operations has been published for the the International Union for Applied and Theoretical Mechanics Physics of Sea Ice (Springer). Co-authored forecasting methods to improve sea ice forecasting skills for the WWF monitoring (Andersson T, Hosking J, Pérez-Ortiz M, Paige B, Elliott A, Russell C., Aksenov Y.,.... Shuckburgh E, (2021). Seasonal Arctic sea ice forecasting with probabilistic deep learning. Nature Communications 12, 5124. https://doi.org/10.1038/s41467-021-25257-4 ). A summary paper on the Arctic sea ice changes on the climate risks and key impacts is prepared and is in review: Blockley, E.W., Aksenov, Y., Campbell, K., Hewitt, H.T., Oltmanns, M., Screen, J. A., Tsamados, M., Impacts of climate change on Arctic sea ice, UK Marine Climate Change Impacts Partnership, 2023.
First Year Of Impact 2019
Sector Aerospace, Defence and Marine,Education,Environment,Leisure Activities, including Sports, Recreation and Tourism,Transport
Impact Types Economic,Policy & public services

 
Description A summary paper on the Arctic sea ice changes, on the climate risks and key impacts
Geographic Reach Multiple continents/international 
Policy Influence Type Contribution to new or improved professional practice
 
Description Citation in "Chokepoints and Vulnerabilities in Global Food Trade" by Bailey, R., and Wellesley, L., Chatham House Report Energy, Environment and Resources Department, June 2017
Geographic Reach Multiple continents/international 
Policy Influence Type Citation in other policy documents
Impact Influenced assessment of trends and changes in the transport sector and food technology, how a shift in the nature of trade and transport, and the advancement of disruptive technologies, could change the outlook for food production and trade via emerging routes and a new transport chokepoints.
 
Description Citation in "Future of the Sea: Implications from Opening Arctic Sea Routes" by Melia et al., commissioned by the UK Government Office for Science, Foresight Future of the Sea project.
Geographic Reach National 
Policy Influence Type Citation in other policy documents
Impact Impacted review "Future of the Sea: Implications from Opening Arctic Sea Routes" commissioned by the UK Government Office for Science, Foresight Future of the Sea project, which assesses projections and scenarios for the Arctic maritime transport and industries for the next two decades.
 
Description Contribution to development the Action Plan (AP) document for the Arctic group WG4 (Predicted Ocean) of the UN Decade of the Ocean
Geographic Reach Multiple continents/international 
Policy Influence Type Contribution to a national consultation/review
Impact Arctic Ocean Action Plan is published in June 2021 (https://www.oceandecade.dk/decade-actions/arctic-action-plan). The document influences international and national policies on the oceans for the next ten years to ensure environmental sustainability of the global oceans.
URL https://www.oceandecade.dk/decade-actions/arctic-action-plan
 
Description Informed the NEMO-SI3 modelling development strategy.
Geographic Reach Multiple continents/international 
Policy Influence Type Contribution to new or improved professional practice
Impact Development of the model components for the climate research to inform IPCC assessment reports 7.
 
Description Input in the Community Ocean Wave Climate (COWCliP) intercomparison project (WMO/IPCC)
Geographic Reach Multiple continents/international 
Policy Influence Type Contribution to new or improved professional practice
 
Description (IMMERSE) - Improving Models for Marine EnviRonment SErvices
Amount € 4,998,942 (EUR)
Funding ID 821926 
Organisation European Commission 
Sector Public
Country European Union (EU)
Start 12/2018 
End 11/2022
 
Description Advective pathways of nutrients and key ecological substances in the Arctic (APEAR)
Amount £252,090 (GBP)
Funding ID NE/R012865/2 
Organisation Natural Environment Research Council 
Sector Public
Country United Kingdom
Start 11/2019 
End 12/2021
 
Description Advective pathways of nutrients and key ecological substances in the Arctic (APEAR)
Amount £430,173 (GBP)
Funding ID NE/R012865/1 
Organisation Natural Environment Research Council 
Sector Public
Country United Kingdom
Start 07/2018 
End 06/2021
 
Description Biogeochemical processes and ecosystem function in changing polar systems and their global impacts (BIOPOLE)
Amount £8,924,449 (GBP)
Funding ID NE/W004933/1 
Organisation Natural Environment Research Council 
Sector Public
Country United Kingdom
Start 04/2022 
End 03/2027
 
Description Consequences of Arctic Warming for European Climate and Extreme Weather
Amount £290,138 (GBP)
Funding ID NE/V004875/1 
Organisation Natural Environment Research Council 
Sector Public
Country United Kingdom
Start 11/2020 
End 11/2023
 
Description ENCORE is the National Capability ORCHESTRA Extension (ENCORE)
Amount £723,925 (GBP)
Funding ID NE/V013254/1 
Organisation Natural Environment Research Council 
Sector Public
Country United Kingdom
Start 04/2021 
End 03/2022
 
Description Marine LTSS: Climate Linked Atlantic Sector Science
Amount £23,736,000 (GBP)
Funding ID NE/R015953/1 
Organisation Natural Environment Research Council 
Sector Public
Country United Kingdom
Start 04/2018 
End 03/2023
 
Description PRE-MELT: Preconditioning the trigger for rapid Arctic ice melt
Amount £105,979 (GBP)
Funding ID NE/T000260/1 
Organisation Natural Environment Research Council 
Sector Public
Country United Kingdom
Start 12/2019 
End 05/2022
 
Description Safer Operations at Sea - Supported by Operational Simulations (SOS-SOS)
Amount £99,111 (GBP)
Funding ID NE/N017099/1 
Organisation Natural Environment Research Council 
Sector Public
Country United Kingdom
Start 04/2016 
End 12/2017
 
Title Coastal permafrost erosion model 
Description Generic off-line pan-Arctic modelling tool of the coastal permafrost erosion has been developed in the framework of the new coupled ocean-sea ice-waves NEMO-CICE-WW3 model and can be used in other coupled and forced ocean-wave models. The developed model follows closely Wight's model (Barnhart 2014) and calculates coastal erosion due to wave action and sea level change anomalies, with added permafrost probability and adjustment for rocky/non rocky coast. The erosion rates depend on geological permafrost temperature, probability (PEX); ice content (ACDD) and marine parameters (SST, SWH, wave period). ACDD has the required variables to calculated organic carbon, nitrate and phosphate fluxes from erosion rates. The erosion model uses inputs from the coupled ocean-sea ice-waves model and land permafrost model and allows simulating permafrost erosion rates and fluxes of the terrigeneous matter, including fluxes of carbon, nutrients and contaminants. 
Type Of Material Improvements to research infrastructure 
Year Produced 2022 
Provided To Others? Yes  
Impact The pan-Arctic model of the coastal permafrost erosion model can provide data on erosion rates for the current and future climate states and leads to the improved simulations of the marine biogeochemistry by accounting for the input of the land biogeochemical fluxes and land contaminants into the marine environment. The model provides coastal permafrost retreat data which allows assessing risks for the shore stability, shore settlements, on-shore structures and installations and can help coastal infrastructure development planning and climate impacts mitigation. The model can used for the ice barrier erosion assessments in the Antarctica. 
URL https://meetingorganizer.copernicus.org/EGU22/EGU22-5807.html
 
Title Combined collisional and pack ice sea ice rheology and dynamics 
Description The method includes the full numerical implementation of combined granular rheology of Marginal Ice Zone sea ice and pack sea ice rheology (Feltham 2005). The method accounts for the impacts of sea ice fragmentation by waves on sea ice rheology and dynamics. The model implementation has been developed at the National Oceanography Centre by Drs Stefanie Rynders and Yevgeny Aksenov and has been included in the coupled and forced ocean-sea ice-waves NEMO(v3.6/v4.0+)-CICE5-ECMWF-WAM/WW3 configurations. 
Type Of Material Improvements to research infrastructure 
Year Produced 2017 
Provided To Others? Yes  
Impact The method forms the basis of the new rheologies in ocean-sea ice-waves configurations and is made freely available through the UK NERC/UKMO Joint Sea Ice Modelling Programme and is used by the UK research community. 
URL https://eprints.soton.ac.uk/428655/
 
Title Coupled wave-ice ocean model 
Description Coupled wave-ice ocean global model code based on the NEMO-CICE-WW3 v3.6 configuration has been developed. The components will be made available to the NEMO modelling system. 
Type Of Material Improvements to research infrastructure 
Year Produced 2022 
Provided To Others? Yes  
Impact The new coupled model introduces improved simulations of the coupled processes between sea ice, waves and ocean and allows accounting for the effects of wave mixing and coastal erosion on the ocean and marine biogeochemical fluxes. The new model enables calculating risks for the off shore structure s and ships in the icy ocean environment and improve safety of the marine operations. 
 
Title Model to assess combined risks from ocean currents, tides, waves and sea ice for offshore operations in the polar oceans and ice-covered seas 
Description Off-line model method and tool to calculate critical loads and safety limits to navigate in sea ice has been developed in the framework of the new coupled ocean-sea ice-waves NEMO-CICE-WW3 model by Drs Stefanie Rynders and Yevgeny Aksenov. The model uses inputs from the coupled ocean-sea ice-waves model and applies newly developed dynamical and static ice loads calculations, along with the safety ice navigation limits for different ship classes and critical loads from combined effects from currents and waves. 
Type Of Material Improvements to research infrastructure 
Year Produced 2022 
Provided To Others? Yes  
Impact It produces timeseries and spatial maps of the loads and maps safety areas for marine operations, including ships navigation and fixed off-shore structures exploitation. The model allows assessments of the combined navigational and structural integrity risks of the fixed and floating off-shore installations from sea ice drift and compressions, ocean waves, currents and tides regionally and globally in all the seasons, as for the present day conditions, as well as for the future climates. This is essential for the marine safety planning and forecasting. 
URL https://link.springer.com/chapter/10.1007/978-3-030-80439-8_12
 
Title New improved sea ice rheology (Elastic-Anisotropic-Plastic) for SI3 regional configuration of the Arctic 
Description New improved sea ice rheology (Elastic-Anisotropic-Plastic) has been developed for the Sea Ice Integrated Initiative SI3 and included in the NEMO ocean modelling framework for the ocean research, climate and forecasting based on the ORCA2_SAS_ICE reference configuration. The NEMO code is available from https://forge.nemo-ocean.eu/nemo/nemo. This configuration has a resolution of 1/36 degree and is a cut-out of the global 1/36 configuration: https://github.com/immerse-project/ORCA36-demonstrator. The test cases for idealised domains are also available via the NEMO4.2 code download. Code authors: Drs Stefanie Rynders and Yevgeny Aksenov. The code base is a pre-4.2.0 NEMO version, the model source code can be found in the file src_tar. 
Type Of Material Improvements to research infrastructure 
Year Produced 2022 
Provided To Others? Yes  
Impact The Elastic-Anisotropic-Plastic sea ice rheology simulates more accurately ice dynamics and open water leads than. the conventional rheologies, improving air-ocean momentum and heat coupling in the models. This leads to the improvement of the forecasts, CMEMS re-analysis and climate simulations. The research is done under the NERC Project "PRE-MELT" 15 (NE/T000260/1) and European Union's Horizon 2020 research and from the innovation programme under grant agreement No 821926 (project IMMERSE-Improving Models for Marine EnviRonment SErvices). The repository fulfils the public data access requirements of these projects. 
URL https://zenodo.org/record/6327871
 
Title Partially coupled global Forced model configuration NEMOv3.6-CICE5-ECWAM 
Description A partially coupled global ocean-sea ice-waves model has been developed by Drs Lucia Hosekova, Yevgeny Aksenov and Stefanie Rynders (NOC) for the model configuration NEMOv3.6-CICE5-WIM-ECWAM. The model has a fully interactive sea ice-wave model component - the Waves in Ice Module (WIM) which accounts for the process of the sea ice break up by waves, wave attenuation and propagation inside sea ice cover, wave-induced ocean mixing and melting of broken ice floes. The CICE5 model features a combined collisional-pack ice rheology, Elastic-Viscous-Plastic-Collisional rheology (EVPC) also developed and implemented by Drs Stefanie Rynders and Yevgeny Aksenov from the theoretical and analytical development by Feltham (2005), with several updates, including numerical solver for sea ice kinetic energy (granular temperature) evolution, and wave surge pressure. CICE5-WIM module simulates prognostic parameters of the sea ice floe sizes distribution, while using semi-empirical power law reconstruction of the floe sizes distribution after wave break up. CICE5-WIM modelling component is fully coupled to the ocean model NEMO and the whole modelling system is forced with the atmospheric re-analysis DFS5 and the wave fields from ECMWF wave model WAM (ECWAM). The partially coupled model has been configured and tested for the decadal integrations at 1 deg. and 1/4 deg. horizontal resolution (NEMO model grid). 
Type Of Material Improvements to research infrastructure 
Year Produced 2017 
Provided To Others? Yes  
Impact The results improve mixed layer depth simulations in the global models, providing ways to improve physical and biogeochemical model biases in the present climate model runs. The results feed in the NERC projects LTSM ORCHESTRA/ENCORE, "Towards the Marginal Arctic Sea Ice", PREMelt and LTSS CLASS and in inform the NEMO-SI3 model development strategy. The model improves predictions of the ocean and sea state in the ice covered areas, with applications for climate, forecasting, off-shore safety and marine industries by providing additional and more accurate information on the sea state in the ice-covered oceans, ice drift and dynamical ice stresses, ice fragmentation and floe sizes and the state of the upper ocean and mixed layer. The model development improved mixed layer depth simulations in the global models, providing ways to improve physical and biogeochemical model biases in the present climate model runs. The model is not more computationally expensive to run than conventional NEMO-CICE model, opening a way for the multi-decadal present and future climate simulations. The results feed in the NERC projects LTSM ORCHESTRA/ENCORE, "Towards the Marginal Arctic Sea Ice", PREMelt and LTSS CLASS and in inform the NEMO-SI3 model development strategy. 
URL https://link.springer.com/chapter/10.1007/978-3-030-80439-8_12
 
Title Regional Arctic (north of ~50N) model NOC FRONTIER ARC36 NEMO-SI3 coupled sea ice-ocean model 
Description Regional Arctic (north of ~50N) model NOC FRONTIER ARC36 NEMO-SI3 is set up and tested at 1/36 deg. (~1.3 km) resolution, including stand-alone sea ice and coupled sea ice-ocean configurations. https://zenodo.org/record/6628486#.ZAn6fxP7RT4 
Type Of Material Improvements to research infrastructure 
Year Produced 2022 
Provided To Others? Yes  
Impact NOC FRONTIER ARC36 NEMO-SI3 coupled sea ice-ocean model simulates realistic linear kinematic features (LKFs) and opening of leads. LKFs and open water leads change significantly in response to variability in the wind forcing on sub-daily scales. Model provides a promising alternative for high resolution sea ice modelling and simulations up to a very short timescale. 
 
Title Sea ice types and provinces diagnostics method 
Description Python and Matlab diagnostics software to detect polynyas and different ice provinces (Marginal Ice Zone, pack ice, interior open water, etc.) in the model output and satellite data. The detection algorithm takes into account sea ice concentration, thickness and proximity to the coast and position/clustering of information grid cells inside ice zone. Code authors: Stefanie Rynders and Ben Barton (NOC). 
Type Of Material Improvements to research infrastructure 
Year Produced 2018 
Provided To Others? Yes  
Impact Allows classification of sea ice provinces in the variety of data and for the salt flux and dense water analysis. 
URL https://eprints.soton.ac.uk/428655/
 
Title Combined MIZ and pack sea ice rheology model 
Description The model includes the implemented combined granular rheology of Marginal Ice Zone sea ice and pack sea ice rheology. Model accounts for the impacts of sea ice fragmentation by waves on sea ice rheology and dynamics (floe size distribution is one of the prognostic parameters). The model has been developed at the National Oceanography Centre by Drs Stefanie Rynders and Yevgeny Aksenov and has been included in the coupled and forced ocean-sea ice-waves NEMO(v3.6/v4.0+)-CICE5-ECMWF-WAM/WW3 configurations. It is made freely available through the UK NERC/UKMO Joint Sea Ice Modelling Programme and is widely used by the UK research community. https://eprints.soton.ac.uk/428655/; https://eprints.soton.ac.uk/428658/ 
Type Of Material Computer model/algorithm 
Year Produced 2019 
Provided To Others? Yes  
Impact Improved sea ice rheology which include granular behaviour of sea ice in the Marginal Ice Zones (MIZ) to be used in the next generation climate models. 
URL https://link.springer.com/chapter/10.1007/978-3-030-80439-8_13
 
Title Coupled wave-sea ice-ocean global model 
Description A fully coupled global ocean-sea ice-waves model has been developed for the model configuration NEMOv3.6-CICE5-WW3. 
Type Of Material Computer model/algorithm 
Year Produced 2022 
Provided To Others? Yes  
Impact Improved predictions of the ocean and sea state in the ice covered areas, with applications for climate, forecasting, off-shore safety and marine industries. 
URL https://doi.org/10.1007/978-3-030-80439-8_12
 
Title Dataset on satellite derived Arctic sea ice thickness from Landy, J. C., Bouffard, J., Wilson, C., Rynders, S., Aksenov, Y., & Tsamados, M. (2022). Mapping Arctic Sea Ice thickness: A new method 
Description 2. Dataset on satellite derived Arctic sea ice thickness derived from Landy, J. C., Bouffard, J., Wilson, C., Rynders, S., Aksenov, Y., & Tsamados, M. (2022). Mapping Arctic Sea Ice thickness: A new method for improved ice freeboard retrieval from satellite altimetry are developed for the period 2010-2020. Authorea Preprints. https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01613; https://www.authorea.com/doi/full/10.1002/essoar.10506919.2 
Type Of Material Database/Collection of data 
Year Produced 2022 
Provided To Others? Yes  
Impact For the first time Arctic sea ice thickness has been obtained from the satellite retrievals for the whole year, and dataset for 2010-2020 were created. Tn is a major data source for the climate research and for improving operational forecast for shipping safety in the Arctic. 
 
Title Improved sea ice rheology (Elastic-Anisotropic-Plastic) for the European ice model SI3 in the NEMO ocean modelling framework 
Description SI3 regional configuration of the Arctic. New improved sea ice rheology (Elastic-Anisotropic-Plastic) has been developed for the Sea Ice Integrated Initiative SI3 and included in the NEMO ocean modelling framework for the ocean research, climate and forecasting based on the ORCA2_SAS_ICE reference configuration. The NEMO code is available from https://forge.nemo-ocean.eu/nemo/nemo. This configuration has a resolution of 1/36 degree and is a cut-out of the global 1/36 configuration: https://github.com/immerse-project/ORCA36-demonstrator. Code authors: Drs Stefanie Rynders and Yevgeny Aksenov. The code base is a pre-4.2.0 NEMO version, the model source code can be found in the file src_tar. 
Type Of Material Computer model/algorithm 
Year Produced 2022 
Provided To Others? Yes  
Impact Improved forecasting skills of the EU model to deliver a wide range of ultra-high ~km-scale forecasts and climate projections for IPCC AR7. 
URL http://forge.ipsl.jussieu.fr/nemo/browser/NEMO/trunk/src/ICE/
 
Title NOC FRONTIER ARC36 NEMO-SI3 coupled sea ice-ocean model and tests with three rheology settings 
Description NOC FRONTIER ARC36 NEMO-SI3 coupled sea ice-ocean model and tests with three rheology settings (aEVP, EAP and EAP-isotropic) are archived on ARCHER-II and BODC. Code, configuration settings are on ARCHER-II and at https://zenodo.org/record/6628486#.ZAn6fxP7RT4 
Type Of Material Database/Collection of data 
Year Produced 2023 
Provided To Others? Yes  
Impact The model integrations show that sea ice concentration, lead positions (and linear kinematic features LKFs), and ice drift divergence are different in all the three rheology options. EAP shows more LKFs than the aEVP with more acute intersection angles, in better agreement with observations. In EAP LKFs change significantly in response to wind forcing variations on sub-daily scales, with aEVP less so. EAP simulations show a large degree of ice anisotropy. Isotropic settings (anisotropy is set constant=0) of EAP show a different pattern of more stepped leads, which also appear in real sea ice. This points out the key role of sea ice anisotropy evolution for realistic simulations. EAP provides a promising alternative for high resolution sea ice modelling, simulating ice plates dynamics impact on ocean eddies. 
 
Title ORCA1-CICE simulations with new mixing and sea ice melting schemes 
Description Results from the ORCA1-CICE model runs with different mixing schemes (TKE, GLS and modified GLS for wind and wave mixing) and different ice melting schemes using prognostic sea ice fragmentation (based on the ocean- sea ice -wave interactions model development by Drs Lucia Hosekova, Stefanie Rynders and Yevgeny Aksenov), the list runs is below. 1. Global NEMO1-control TKE, NEMO 3.6 stable + CICE 5.1, control 1with TKE vertical mixing lateral melting scheme with constant ice floes sizes, monthly output of U,V,T,S, W, vertical diffusivity and monthly output of sea ice (Hice Aice, Uice, Vice, Internal stresses, ice tendencies) and wave information (HS, Tp) 2. Global NEMO1-control GLS, NEMO 3.6 stable + CICE 5.1, control 2 with GLS vertical mixing, monthly output of U,V,T,S, W, vertical diffusivity and monthly output of sea ice (Hice Aice, Uice, Vice, Internal stresses, ice tendencies) and wave information (HS, Tp) 3. Global NEMO1-GLS, NEMO 3.6 stable + CICE 5.1, with modified GLS vertical mixing for wind effects, monthly output of U,V,T,S, W, vertical diffusivity and monthly output of sea ice (Hice Aice, Uice, Vice, Internal stresses, ice tendencies) and wave information (HS, Tp) 4. Global NEMO1-GLS, NEMO 3.6 stable + CICE 5.1, with modified GLS vertical mixing for wave effects, monthly output of U,V,T,S, W, vertical diffusivity and monthly output of sea ice (Hice Aice, Uice, Vice, Internal stresses, ice tendencies) and wave information (HS, Tp) 5. Global NEMO1-LM, NEMO 3.6 stable + CICE 5.1, with TKE vertical mixing and modified lateral melting scheme due to prognostics ice floes sizes, monthly output of U,V,T,S, W, vertical diffusivity and monthly output of sea ice (Hice Aice, Uice, Vice, Internal stresses, ice tendencies) and wave information (HS, Tp) 6. Global NEMO025-control, NEMO 3.6 stable + CICE 5.1, with TKE vertical mixing and modified lateral melting scheme with constant ice floes sizes, monthly output of U,V,T,S, W, vertical diffusivity and monthly output of sea ice (Hice Aice, Uice, Vice, Internal stresses, ice tendencies) and wave information (HS, Tp) 7. Global NEMO025-LM, NEMO 3.6 stable + CICE 5.1, with TKE vertical mixing and modified lateral melting scheme due to prognostics ice floes sizes, monthly output of U,V,T,S, W, vertical diffusivity and monthly output of sea ice (Hice Aice, Uice, Vice, Internal stresses, ice tendencies) and wave information (HS, Tp) 
Type Of Material Database/Collection of data 
Year Produced 2017 
Provided To Others? Yes  
Impact The results improve mixed layer depth simulations in the global models, providing ways to improve physical and biogeochemical model biases in the present climate model runs. The results feed in the NERC projects LTSM ORCHESTRA/ENCORE, "Towards the Marginal Arctic Sea Ice", PREMelt and LTSS CLASS and in inform the NEMO-SI3 model development strategy. 
URL https://eprints.soton.ac.uk/428655/
 
Title Off-line model to assess combined risks from ocean currents, tides, waves and sea ice for offshore operations in the polar oceans and ice-covered seas 
Description Off-line model to calculate critical loads and safety limits to navigate in sea ice has been developed in the framework of the new coupled ocean-sea ice-waves NEMO-CICE-WW3 model by Drs Stefanie Rynders and Yevgeny Aksenov (NOC). The model uses inputs from the coupled ocean-sea ice-waves model and applies newly developed dynamical and static ice loads calculations, along with the safety ice navigation limits for different ship classes and critical loads from combined effects from currents and waves. The model is generic and can use netcdf input from any ocean-sea ice-wave models. The model produces timeseries and spatial maps of the loads and maps safety areas for marine operations, including ships navigation and fixed off-shore structures exploitation. 
Type Of Material Computer model/algorithm 
Year Produced 2022 
Provided To Others? Yes  
Impact The model allows assessments of the combined navigational and structural integrity risks of the fixed and floating off-shore installations from sea ice drift and compressions, ocean waves, currents and tides regionally and globally in all the seasons, as for the present day conditions, as well as for the future climates. This is essential for the marine safety planning and forecasting. 
URL https://doi.org/10.1007/978-3-030-80439-8_12
 
Title Off-line pan-Arctic model of the coastal permafrost erosion 
Description Off-line pan-Arctic model of the coastal permafrost erosion has been developed in the framework of the new coupled ocean-sea ice-waves NEMO-CICE-WW3 model. The erosion model uses inputs from the coupled ocean-sea ice-waves model and land permafrost model and allows simulating permafrost erosion rates and fluxes of the terrigeneous matter, including fluxes of carbon, nutrients and contaminants. The developed model follows closely Wight's model (Barnhart 2014) and calculates coastal erosion due to wave action and sea level change anomalies, with added permafrost probability and adjustment for rocky/non rocky coast. The erosion rates depend on geological permafrost temperature, probability (PEX); ice content (ACDD) and marine parameters (SST, SWH, wave period). ACDD has the required variables to calculated organic carbon, nitrate and phosphate fluxes from erosion rates. 
Type Of Material Computer model/algorithm 
Year Produced 2022 
Provided To Others? Yes  
Impact Arctic coastal erosion is an increasing problem via threat to infrastructure, also it affects the marine environment. Arctic coast is mainly soft sediment permafrost. Sea ice protection is decreasing, leading to increased erosion from waves and melting. The pan-Arctic model of the coastal permafrost erosion model leads to the improved simulations of the marine biogeochemistry by accounting for the input of the land biogeochemical fluxes and land contaminants into the marine environment. The model offers quantitative assessments of the future erosion trends, informing mitigation scenarios of the coastal structure integrity and settlements safety. The model can be used to assess melting and collapse of the ice barrier from the waves in the Antarctica and sea level rise. 
URL https://meetingorganizer.copernicus.org/EGU22/EGU22-5807.html
 
Title Wave-sea ice-ocean global model NEMOv3.6-CICE5-WIM-ECWAM 
Description A partially coupled global ocean-sea ice-waves model has been developed by Drs Lucia Hosekova, Yevgeny Aksenov and Stefanie Rynders (NOC) for the model configuration NEMOv3.6-CICE5-WIM-ECWAM. The model has a fully interactive sea ice-wave model component - the Waves in Ice Module (WIM) which accounts for the process of the sea ice break up by waves, wave attenuation and propagation inside sea ice cover, wave-induced ocean mixing and melting of broken ice floes. The CICE5 model features a combined collisional-pack ice rheology, Elastic-Viscous-Plastic-Collisional rheology (EVPC) also developed and implemented by Drs Stefanie Rynders and Yevgeny Aksenov from the theoretical and analytical development by Feltham (2005), with several updates, including numerical solver for sea ice kinetic energy (granular temperature) evolution, and wave surge pressure. CICE5-WIM module simulates prognostic parameters of the sea ice floe sizes distribution, while using semi-empirical power law reconstruction of the floe sizes distribution after wave break up. CICE5-WIM modelling component is fully coupled to the ocean model NEMO and the whole modelling system is forced with the atmospheric re-analysis DFS5 and the wave fields from ECMWF wave model WAM (ECWAM). The partially coupled model has been configured and tested for the decadal integrations at 1 deg. and 1/4 deg. horizontal resolution (NEMO model grid). Digital Object Identifier 10.1007/978-3-030-80439-8_12 
Type Of Material Computer model/algorithm 
Year Produced 2017 
Provided To Others? Yes  
Impact The model improves predictions of the ocean and sea state in the ice covered areas, with applications for climate, forecasting, off-shore safety and marine industries by providing additional and more accurate information on the sea state in the ice-covered oceans, ice drift and dynamical ice stresses, ice fragmentation and floe sizes and the state of the upper ocean and mixed layer. The model development improved mixed layer depth simulations in the global models, providing ways to improve physical and biogeochemical model biases in the present climate model runs. The model is not more computationally expensive to run than conventional NEMO-CICE model, opening a way for the multi-decadal present and future climate simulations. The results feed in the NERC projects LTSM ORCHESTRA/ENCORE, "Towards the Marginal Arctic Sea Ice", PREMelt and LTSS CLASS and in inform the NEMO-SI3 model development strategy. 
URL https://doi.org/10.1007/978-3-030-80439-8_12
 
Description Australian Antarctic Science Program 
Organisation University of Adelaide
Country Australia 
Sector Academic/University 
PI Contribution Modelling of the ice dynamics and waves in the Southern Ocean and comparison to the observations for model validation development and tuning.
Collaborator Contribution In-situ observations for model validation development and tuning.
Impact Sea ice-ocean-waves model validation development and tuning to simulated ice edge dynamics. Presentations at the major international meeting EGU and AGU and reports.
Start Year 2017
 
Description EU ALBATROSS Programme lead by ESA on global tides in polar areas from models and satellites. 
Organisation European Space Agency
Country France 
Sector Public 
PI Contribution Collaboration between NOC (external partner) and EU ALBATROSS Programme lead by ESA on global tides in polar areas from models and satellites is focused on improvement of tidal simulations in climate large scale models.
Collaborator Contribution Partners deliver global tides data from satellites and advanced tidal hydrodynamical modelling.
Impact Global tides data from satellites has been collected.
Start Year 2020
 
Description Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Programme 
Organisation Alfred-Wegener Institute for Polar and Marine Research
Country Germany 
Sector Private 
PI Contribution Retreating Arctic sea ice is expected to change the way the ocean interacts with the atmosphere, which will affect the Arctic ecosystems. Te partnership helps to understand how the sea ice decline and the longer summer season will change the pathways of nutrients which enter the Arctic Ocean from the Atlantic and Pacific.
Collaborator Contribution The partners are to examine how the differences between parts of the Arctic ecosystem may change and combine in situ measurements from MOSAiC fieldwork with ultra-high-resolution computer modelling to quantify current and future changes in the Arctic ecosystems.
Impact A full year of extreme sea-ice and atmosphere conditions in the Eurasian Arctic: the OCEAN environment during MOSAiC Benjamin Rabe1, Céline Heuzé2, and the MOSAiC OCEAN Team: Yevgeny Aksenov , NOCS ; Jacob Allerholt , AWI ; Marylou Athanase , LOCEAN-IPSL ; Chris Basque , WHOI ; Dorothea Bauch , GEOMAR ; Till Baumann , UiB ; Dake Chen , SIO ; Silvia Cole , WHOI ; Sam Cornish , U Oxford ; Lisa Craw , U Tasmania ; Andrew Davies , WHOI ; Dmitry Divine , NPI/HAVOC ; Francesca Doglioni , AWI ; Falk Ebert , Herder-Gymnasium Berlin ; Carina Engicht , AWI ; Ying-Chih Fang , AWI ; Ilker Fer , UIB ; Mats Granskog , NPI/HAVOC ; Rainer Graupner , AWI ; Hailun He , SIO China ; Yan He , FIO ; Céline Heuzé , U Gotheburg ; Mario Hoppmann , AWI ; Markus Janout , AWI ; David Kadko , FIU ; Torsten Kanzow , AWI ; Salar Karam , U Gothenburg ; Yusuke Kawaguchi , Uni. Tokyo ; Zoe Koenig , UIB ; Bin Kong , FIO ; Rick Krishfield , WHOI ; David Kuhlmey , AWI ; Ivan Kuznetsov , AWI ; Musheng Lan , PRIC ; Ruibo Lei , PRIC ; Tao Li , OUC ; Long Lin , SIO ; Hailong Liu , SJTU ; Na Liu , FIO ; Xiaobing Ma , FIO ; Rosalie MacKay , NTNU ; Maria Mallet , AWI ; Robbie Mallet , UCL ; Wieslaw Maslowski , NPS ; Christian Mertens , Uni Bremen ; Volker Mohrholz , IOW ; Matthias Monsees , AWI ; Morven Muilwijk , UiB ; Jeff O'Brien , WHOI ; Algot Peterson , UIB ; Pierre Priou , U Newfoundland ; Benjamin Rabe , AWI ; Julia Regnery , AWI ; Jian Ren , SIO ; Natalia Ribeiro Santos , U Tasmania ; Janin Schaffer , AWI ; Ingo Schuffenhauer , IOW ; Kirstin Schulz , AWI ; William Shaw , NPS ; Timothy Stanton , NPS ; Mark Stephens , FIU ; Jie Su , OUC ; Natalia Sukhikh , Uni Bremen ; Arild Sundfjord , NPI/HAVOC ; Sandra Tippenhauer , AWI ; John Toole , WHOI ; Pedro Torre , NTNU ; Jutta Vernaleken , AWI ; Myriel Vredenborg , AWI ; Hangzhou Wang , ZJU ; Lei Wang , BMU ; Yuntao Wang , SIO ; Bai Youcheng , SIO ; Jinping Zhao , OUC ; Meng Zhou , SJTU ; Jialiang Zhu , OUC., EGU21-1794, updated on 10 Mar 2021 https://doi.org/10.5194/egusphere-egu21-1794 EGU General Assembly 2021
Start Year 2018
 
Description Programme "Wave-induced structural gradients in Antarctic sea ice cover, ANTGRAD" 
Organisation Aalto University
Country Finland 
Sector Academic/University 
PI Contribution Collaboration between NOC (external partner), the Aalto University, Finland (programme lead) and Finish Meteorological Institute has been set-up in the Programme "Wave-induced structural gradients in Antarctic sea ice cover, ANTGRAD". The programme runs 2021-2024 and examines ocean energy decay in the ice-covered regions to understand impacts on the future ocean climates and improve both the observational capacities and the model development for the climate research and forecasting in the ice-covered oceans. The programme includes modelling, remote sensing, lab experiments in the Aalto Ice Tank and measurement using Agulhas II.
Collaborator Contribution The programme includes modelling, remote sensing, lab experiments in the Aalto Ice Tank and measurements on sea ice and waves using Agulhas II.
Impact Data on sea ice and waves in the Southern Ocean to validate model performance have been collected during Agulhas II cruise. Undergoes QC checks, will be publicly available.
Start Year 2021
 
Description The next phase of the Community Ocean Wave Climate (COWCliP) model intercomparison project. https://cowclip.org/ 
Organisation Commonwealth Scientific and Industrial Research Organisation
Country Australia 
Sector Public 
PI Contribution NOC participates in the next phase the next phase of the Community Ocean Wave Climate (COWCliP) model intercomparison project, led by CSIRO, Australia, and endorsed by WMO/IPCC. https://cowclip.org/ . This is a worldwide collaboration between ocean-sea ice-wave modelling groups. NOC provides climate simulations with global wave-NEMO-sea ice model, for the current and future projected climates.
Collaborator Contribution Partners provide climate simulations from ensembles of global waves models.
Impact Project has just started.
Start Year 2022
 
Description UK LTS-M Atlantic Climate System Integrated Study Programme (ACSIS)" (NE/N018044/1) 
Organisation British Antarctic Survey
Country United Kingdom 
Sector Academic/University 
PI Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Collaborator Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Impact Publication: Robson, J., Aksenov, Y., Bracegirdle, T. J., Dimdore-Miles, O., Griffiths, P. T., Grosvenor, D. P., ... & Wilcox, L. J. (2020). The evaluation of the North Atlantic climate system in UKESM1 historical simulations for CMIP6. Journal of Advances in Modeling Earth Systems, 12(9), e2020MS002126.
Start Year 2019
 
Description UK LTS-M Atlantic Climate System Integrated Study Programme (ACSIS)" (NE/N018044/1) 
Organisation Meteorological Office UK
Country United Kingdom 
Sector Academic/University 
PI Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Collaborator Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Impact Publication: Robson, J., Aksenov, Y., Bracegirdle, T. J., Dimdore-Miles, O., Griffiths, P. T., Grosvenor, D. P., ... & Wilcox, L. J. (2020). The evaluation of the North Atlantic climate system in UKESM1 historical simulations for CMIP6. Journal of Advances in Modeling Earth Systems, 12(9), e2020MS002126.
Start Year 2019
 
Description UK LTS-M Atlantic Climate System Integrated Study Programme (ACSIS)" (NE/N018044/1) 
Organisation National Centre for Earth Observation
Country United Kingdom 
Sector Academic/University 
PI Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Collaborator Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Impact Publication: Robson, J., Aksenov, Y., Bracegirdle, T. J., Dimdore-Miles, O., Griffiths, P. T., Grosvenor, D. P., ... & Wilcox, L. J. (2020). The evaluation of the North Atlantic climate system in UKESM1 historical simulations for CMIP6. Journal of Advances in Modeling Earth Systems, 12(9), e2020MS002126.
Start Year 2019
 
Description UK LTS-M Atlantic Climate System Integrated Study Programme (ACSIS)" (NE/N018044/1) 
Organisation Plymouth Marine Laboratory
Country United Kingdom 
Sector Academic/University 
PI Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Collaborator Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Impact Publication: Robson, J., Aksenov, Y., Bracegirdle, T. J., Dimdore-Miles, O., Griffiths, P. T., Grosvenor, D. P., ... & Wilcox, L. J. (2020). The evaluation of the North Atlantic climate system in UKESM1 historical simulations for CMIP6. Journal of Advances in Modeling Earth Systems, 12(9), e2020MS002126.
Start Year 2019
 
Description UK LTS-M Atlantic Climate System Integrated Study Programme (ACSIS)" (NE/N018044/1) 
Organisation University of Cambridge
Department Department of Chemistry
Country United Kingdom 
Sector Academic/University 
PI Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Collaborator Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Impact Publication: Robson, J., Aksenov, Y., Bracegirdle, T. J., Dimdore-Miles, O., Griffiths, P. T., Grosvenor, D. P., ... & Wilcox, L. J. (2020). The evaluation of the North Atlantic climate system in UKESM1 historical simulations for CMIP6. Journal of Advances in Modeling Earth Systems, 12(9), e2020MS002126.
Start Year 2019
 
Description UK LTS-M Atlantic Climate System Integrated Study Programme (ACSIS)" (NE/N018044/1) 
Organisation University of Leeds
Department School of Earth and Environment
Country United Kingdom 
Sector Academic/University 
PI Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Collaborator Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Impact Publication: Robson, J., Aksenov, Y., Bracegirdle, T. J., Dimdore-Miles, O., Griffiths, P. T., Grosvenor, D. P., ... & Wilcox, L. J. (2020). The evaluation of the North Atlantic climate system in UKESM1 historical simulations for CMIP6. Journal of Advances in Modeling Earth Systems, 12(9), e2020MS002126.
Start Year 2019
 
Description UK LTS-M Atlantic Climate System Integrated Study Programme (ACSIS)" (NE/N018044/1) 
Organisation University of Oxford
Department Department of Physics
Country United Kingdom 
Sector Academic/University 
PI Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Collaborator Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Impact Publication: Robson, J., Aksenov, Y., Bracegirdle, T. J., Dimdore-Miles, O., Griffiths, P. T., Grosvenor, D. P., ... & Wilcox, L. J. (2020). The evaluation of the North Atlantic climate system in UKESM1 historical simulations for CMIP6. Journal of Advances in Modeling Earth Systems, 12(9), e2020MS002126.
Start Year 2019
 
Description UK LTS-M Atlantic Climate System Integrated Study Programme (ACSIS)" (NE/N018044/1) 
Organisation University of Reading
Department Department of Meteorology
Country United Kingdom 
Sector Academic/University 
PI Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Collaborator Contribution Joint analysis of the UK ESM historical period ensemble integrations. Model validations on in situ data and satellite products and bias assessments.
Impact Publication: Robson, J., Aksenov, Y., Bracegirdle, T. J., Dimdore-Miles, O., Griffiths, P. T., Grosvenor, D. P., ... & Wilcox, L. J. (2020). The evaluation of the North Atlantic climate system in UKESM1 historical simulations for CMIP6. Journal of Advances in Modeling Earth Systems, 12(9), e2020MS002126.
Start Year 2019
 
Title ARC36 stand-alone SI3 Arctic configuration 
Description SI3 regional configuration of the Arctic This is a configuration of the NEMO community ocean model based on the ORCA2_SAS_ICE reference configuration. The NEMO code is available from https://forge.nemo-ocean.eu/nemo/nemo. This configuration has a resolution of 1/36 degree and is a cut-out of the global 1/36 configuration: https://github.com/immerse-project/ORCA36-demonstrator. The code base is a pre-4.2.0 NEMO version, the model source code can be found in the file src_tar. Model setup Follow the instructions on https://sites.nemo-ocean.io/user-guide/index.html to download and install the NEMO model version 4.2.0. Swap the src directory for the one in the tar file src_tar. Compile the ORCA2_SAS_ICE reference configuration. Put the rest of the files in this zenodo archive in the EXP00 directory, except the namelist_cfg_for_DOMAINcfg file which goes into tools/DOMAINcfg along with the grid files to be downloaded later. The files provided include example configuration namelist files namelist_cfg and namelist_ice_cfg. The atmospheric forcing used is the Drakkar forcing set (DFS) version 5.2, year 2008. The atmospheric forcing is interpolated on-the-fly, using the weights files. The weights were calculated using the nemo WEIGHTS tool. For the ocean (bottom) boundary the World Ocean Atlas 2018 multidecadal monthly averages are used. The data is already interpolated onto the ARC36 grid. Interpolation was done using the SOSIE tool. Files provided are monthly averages of sea surface salinity and temperature. Finally, the model grid domain_cfg.nc needs to be created. Download the ORCA36 files from ftp://ftp.mercator-ocean.fr/download/users/cbricaud/BENCH-ORCA36-INPUT.tar.gz, see the ORCA36 demonstrator github page. The necessary files are the coordinates and bathymetry files. To cut out the Arctic domain use ncks -F -d y,7000,,1 in.nc out.nc. Put in tools/DOMAINcfg and use the DOMAINcfg NEMO tool to create the domain_cfg.nc file using the file namelist_cfg_for_DOMAINcfg as namelist_cfg. The resulting file is large (122GB) therefore executing in parallel mode is required. The individual processor files need to be merged into one, use the REBUILD_NEMO tool. Put the resulting domain_cfg.nc file into EXP00 and run NEMO following the instructions. The ARC36 configuration was set up and run on ARCHER2 using 594 NEMO processors and 12 XIOS processors. 
Type Of Technology Software 
Year Produced 2022 
Open Source License? Yes  
Impact The Elastic-Anisotropic-Plastic sea ice rheology simulates more accurately ice dynamics and open water leads than. the conventional rheologies, improving air-ocean momentum and heat coupling in the models. This leads to the improvement of the forecasts, CMEMS re-analysis and climate simulations. The research is done under the NERC Project "PRE-MELT" 15 (NE/T000260/1) and European Union's Horizon 2020 research and from the innovation programme under grant agreement No 821926 (project IMMERSE-Improving Models for Marine EnviRonment SErvices). The repository fulfils the public data access requirements of these projects. 
URL https://zenodo.org/record/6327871
 
Title ARC36 stand-alone SI3 Arctic configuration 
Description SI3 regional configuration of the Arctic This is a configuration of the NEMO community ocean model based on the ORCA2_SAS_ICE reference configuration. The NEMO code is available from https://forge.nemo-ocean.eu/nemo/nemo. This configuration has a resolution of 1/36 degree and is a cut-out of the global 1/36 configuration: https://github.com/immerse-project/ORCA36-demonstrator. The code base is a pre-4.2.0 NEMO version, the model source code can be found in the file src_tar. Model setup Follow the instructions on https://sites.nemo-ocean.io/user-guide/index.html to download and install the NEMO model version 4.2.0. Swap the src directory for the one in the tar file src_tar. Compile the ORCA2_SAS_ICE reference configuration. Put the rest of the files in this zenodo archive in the EXP00 directory, except the namelist_cfg_for_DOMAINcfg file which goes into tools/DOMAINcfg along with the grid files to be downloaded later. The files provided include example configuration namelist files namelist_cfg and namelist_ice_cfg. The atmospheric forcing used is the Drakkar forcing set (DFS) version 5.2, year 2008. The atmospheric forcing is interpolated on-the-fly, using the weights files. The weights were calculated using the nemo WEIGHTS tool. For the ocean (bottom) boundary the World Ocean Atlas 2018 multidecadal monthly averages are used. The data is already interpolated onto the ARC36 grid. Interpolation was done using the SOSIE tool. Files provided are monthly averages of sea surface salinity and temperature. Finally, the model grid domain_cfg.nc needs to be created. Download the ORCA36 files from ftp://ftp.mercator-ocean.fr/download/users/cbricaud/BENCH-ORCA36-INPUT.tar.gz, see the ORCA36 demonstrator github page. The necessary files are the coordinates and bathymetry files. To cut out the Arctic domain use ncks -F -d y,7000,,1 in.nc out.nc. Put in tools/DOMAINcfg and use the DOMAINcfg NEMO tool to create the domain_cfg.nc file using the file namelist_cfg_for_DOMAINcfg as namelist_cfg. The resulting file is large (122GB) therefore executing in parallel mode is required. The individual processor files need to be merged into one, use the REBUILD_NEMO tool. Put the resulting domain_cfg.nc file into EXP00 and run NEMO following the instructions. The ARC36 configuration was set up and run on ARCHER2 using 594 NEMO processors and 12 XIOS processors. Animation The animation has been created from daily average of sea ice fraction from the 1/36° Arctic NEMO-SI3 model integrations with the EAP rheology. The animation has started on the 00:00 of the 1st January 2008 and carried out through the January. It shows a limited area of the model domain north of Fram Strait. The lower concentrations correspond to the opening leads, with "blurred" leads and some multiple signatures due to ice displacement and data averaging over 1-day periods. Acknowledgements: EU IMMERSE (Grant agreement ID: 821926), NERC APEAR project (NE/R012865/1, NE/R012865/2, #03V01461), part of the Changing Arctic Ocean programme; EU H2020 COMFORT (no. 820989); NERC PRE-MELT (NE/T000546/1), and LTS-S CLASS (NE/R015953/1). ARCHER UK National Supercomputing and JASMIN facilities. 
Type Of Technology Software 
Year Produced 2022 
Impact Regional Arctic (north of ~50N) model NOC FRONTIER ARC36 NEMO-SI3 is set up and tested at 1/36 (~1.3 km) resolution, including stand-alone sea ice and coupled sea ice-ocean configurations (Open Source). This is a configuration of the NEMO community ocean model based on the global 1/36 configuration https://github.com/immerse-project/ORCA36-demonstrator . The code base is 4.2 NEMO version with SI3 sea ice model. Follow the instructions on https://sites.nemo-ocean.io/user-guide/index.html to download and install the NEMO mode. The ARC36 configuration is set up and run on ARCHER2 using 2000 processors. (See also Tools & Methods.) https://zenodo.org/record/6628486#.ZAn6fxP7RT4 
URL https://zenodo.org/record/6628486
 
Title Combined sea ice rheology code 
Description Fortran90 model code to account for the impacts of sea ice fragmentation by waves on sea ice rheology and dynamics. The model has been developed at the National Oceanography Centre by Drs Stefanie Rynders and Yevgeny Aksenov and has been included in the coupled and forced ocean-sea ice-waves NEMO(v3.6/v4.0+)-CICE5-ECMWF-WAM/WW3 configurations. 
Type Of Technology Software 
Year Produced 2019 
Open Source License? Yes  
Impact It is made freely available through the UK NERC/UKMO Joint Sea Ice Modelling Programme and is widely used by the UK research community. 
URL https://doi.org/10.1007/978-3-030-80439-8_13
 
Title Coupled wave-sea ice-ocean global model 
Description A fully coupled global ocean-sea ice-waves model has been developed for the model configuration NEMOv3.6-CICE5-WW3. 2022. Code author: Dr Stefanie Rynders. 
Type Of Technology Software 
Year Produced 2022 
Open Source License? Yes  
Impact Improved predictions of the ocean and sea state in the ice covered areas, with applications for climate, forecasting, off-shore safety and marine industries. 
URL https://doi.org/10.1007/978-3-030-80439-8_12
 
Title Forced-partially coupled model configuration NEMOv3.6-CICE5-ECWAM 
Description A partially coupled global ocean-sea ice-waves model has been developed by Drs Lucia Hosekova, Yevgeny Aksenov and Stefanie Rynders (NOC) for the model configuration NEMOv3.6-CICE5-WIM-ECWAM. The model has a fully interactive sea ice-wave model component - the Waves in Ice Module (WIM) which accounts for the process of the sea ice break up by waves, wave attenuation and propagation inside sea ice cover, wave-induced ocean mixing and melting of broken ice floes. The CICE5 model features a combined collisional-pack ice rheology, Elastic-Viscous-Plastic-Collisional rheology (EVPC) also developed and implemented by Drs Stefanie Rynders and Yevgeny Aksenov from the theoretical and analytical development by Feltham (2005), with several updates, including numerical solver for sea ice kinetic energy (granular temperature) evolution, and wave surge pressure. CICE5-WIM module simulates prognostic parameters of the sea ice floe sizes distribution, while using semi-empirical power law reconstruction of the floe sizes distribution after wave break up. CICE5-WIM modelling component is fully coupled to the ocean model NEMO and the whole modelling system is forced with the atmospheric re-analysis DFS5 and the wave fields from ECMWF wave model WAM (ECWAM). The partially coupled model has been configured and tested for the decadal integrations at 1 deg. and 1/4 deg. horizontal resolution (NEMO model grid). 
Type Of Technology Software 
Year Produced 2017 
Open Source License? Yes  
Impact The results improve mixed layer depth simulations in the global models, providing ways to improve physical and biogeochemical model biases in the present climate model runs. The results feed in the NERC projects LTSM ORCHESTRA/ENCORE, "Towards the Marginal Arctic Sea Ice", PREMelt and LTSS CLASS and in inform the NEMO-SI3 model development strategy. The model improves predictions of the ocean and sea state in the ice covered areas, with applications for climate, forecasting, off-shore safety and marine industries by providing additional and more accurate information on the sea state in the ice-covered oceans, ice drift and dynamical ice stresses, ice fragmentation and floe sizes and the state of the upper ocean and mixed layer. The model is not more computationally expensive to run than conventional NEMO-CICE model, opening a way for the multi-decadal present and future climate simulations. The results feed in the NERC projects LTSM ORCHESTRA/ENCORE, "Towards the Marginal Arctic Sea Ice", PREMelt and LTSS CLASS and in inform the NEMO-SI3 model development strategy. 
URL https://eprints.soton.ac.uk/428655/
 
Title Matlab model code and scripts to analyse reversibility of the Arctic and Antarctic sea ice cover in the IPCC CMIP models. 
Description Matlab model code and scripts to analyse reversibility of the Arctic and Antarctic sea ice cover in the IPCC CMIP models. The model code has been successfully applied to the CMIP6 set of models ran under the CDR-MIP scenarios with different CO2 emission pathways. The code is generic and can be used with netcdf data input stored on NEMO or geographical grids (author Stefanie Rynders). 
Type Of Technology Software 
Year Produced 2022 
Impact Matlab model code and scripts analyse reversibility of the Arctic and Antarctic sea ice cover in the IPCC CMIP models. The model code has been successfully applied to the CMIP6 set of models ran under the CDR-MIP scenarios with different CO2 emission pathways. The code is generic and can be used with netcdf data input stored on NEMO or geographical grids. The code will, be available in 2023 (a paper on results to be submitted) 
 
Title Mixing modules in NEMO 
Description Ocean mixing modules for the NEMO system model v3.6 and 4.0. distributed under the CeCILL FREE SOFTWARE LICENSE AGREEMENT. 
Type Of Technology Software 
Year Produced 2020 
Open Source License? Yes  
Impact The wave mixing module improves simulations of the oceanic mixed layer, ocean heat content and sea ice in the Arctic and Souther Ocean. The modelling research community is informed on the model development, which is used as an open source for the scientific research. 
URL http://eprints.soton.ac.uk/id/eprint/428655
 
Title Off-line Matlab model code to automatically detect ocean gyres in the barotropic flow. 
Description Off-line Matlab model code to automatically detect ocean gyres in the barotropic flow. The code is generic and can be used with netcdf data input stored on NEMO or geographical grids (author Stefanie Rynders). 
Type Of Technology Software 
Year Produced 2022 
Impact The code to automatically detect ocean gyres in the barotropic flow from the barotropic stream functions, allowing to find out the largest connected oceanic gyres and examine their variability for ocean circulation analysis in the climate models. The code is generic and can be used with netcdf data input stored on NEMO or geographical grids (author Stefanie Rynders). 
 
Title Off-line generic pan-Arctic model code of the coastal permafrost erosion 
Description Off-line pan-Arctic Matlab model code of the coastal permafrost erosion has been developed for the framework of the new coupled ocean-sea ice-waves NEMO-CICE-WW3 model at the National Oceanography Centre by Dr Stefanie Rynders. The code is generic and can be used with netcdf data input from wave-ocean models. 
Type Of Technology Software 
Year Produced 2022 
Impact The pan-Arctic model of the coastal permafrost erosion model can provide data on erosion rates for the current and future climate states and leads to the improved simulations of the marine biogeochemistry by accounting for the input of the land biogeochemical fluxes and land contaminants into the marine environment. The model provides coastal permafrost retreat data which allows assessing risks for the shore stability, shore settlements, on-shore structures and installations and can help coastal infrastructure development planning and climate impacts mitigation. The model can used for the ice barrier erosion assessments in the Antarctica. 
URL https://meetingorganizer.copernicus.org/EGU22/EGU22-5807.html
 
Title Off-line model code to assess combined risks from ocean currents, tides, waves and sea ice for offshore operations in the polar oceans and ice-covered seas 
Description Off-line Matlab model code to calculate critical loads and safety limits to navigate in sea ice has been developed in the framework of the new coupled ocean-sea ice-waves NEMO-CICE-WW3 model by Drs Stefanie Rynders and Yevgeny Aksenov (NOC). The model uses inputs from the coupled ocean-sea ice-waves model and applies newly developed dynamical and static ice loads calculations, along with the safety ice navigation limits for different ship classes and critical loads from combined effects from currents and waves. The model is generic and can use netcdf input from any ocean-sea ice-wave models. The model produces timeseries and spatial maps of the loads and maps safety areas for marine operations, including ships navigation and fixed off-shore structures exploitation. 
Type Of Technology Software 
Year Produced 2022 
Impact The model software allows off-line assessments of the combined navigational and structural integrity risks of the fixed and floating off-shore installations from sea ice drift and compressions, ocean waves, currents and tides regionally and globally in all the seasons, as for the present day conditions, as well as for the future climates. This is essential for the marine safety planning and forecasting. 
URL https://link.springer.com/chapter/10.1007/978-3-030-80439-8_12
 
Title Off-line pan-Arctic Matlab model code to calculate wave heights, sea ice total area and sea ice extent and coastal erosion by Arctic geographical sectors (Western, Canadian, west Siberian and East Siberian) and in the specified locations 
Description 2. Off-line pan-Arctic Matlab model code to calculate wave heights, sea ice total area and sea ice extent and coastal erosion by Arctic geographical sectors (Western, Canadian, west Siberian and East Siberian) and in the specified locations. The code is generic and can be used with netcdf data input from wave-ocean models (authors Yevgeny Aksenov and Stefanie Rynders). 
Type Of Technology Software 
Year Produced 2022 
Impact The code serves to compare model output with available data. 
 
Title Sea ice types and provinces diagnostics software 
Description Python and Matlab diagnostics software to detect polynyas and different ice provinces (Marginal Ice Zone, pack ice, interior open water, etc.) in the model output and satellite data. The detection algorithm takes into account sea ice concentration, thickness and proximity to the coast and position/clustering of information grid cells inside ice zone. Code authors: Stefanie Rynders and Ben Barton (NOC). 
Type Of Technology Software 
Year Produced 2021 
Impact Allows classification of sea ice provinces in the variety of data and for the salt flux and dense water analysis. 
URL https://eprints.soton.ac.uk/428655/
 
Description Action Plan (AP) document for the Arctic group WG4 (Predicted Ocean) of the UN Decade of the Ocean 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Championed one of the topics of the Action Plan (AP) document for the Arctic group WG4 (Predicted Ocean) of the UN Decade of the Ocean
Year(s) Of Engagement Activity 2021
 
Description Interview for BBC Radio 4 Arctic special "Today" programme 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Media (as a channel to the public)
Results and Impact Aksenov has been interviewed on the BBC Radio 4 Arctic special for the "Today" programme aired Thur the 14 Mar on the changes in the Artic and links with the industrial applications.
Year(s) Of Engagement Activity 2019
 
Description Linking Science and Policy: participated in the training by UN, webinar series "Enhancing International Scientific Cooperation: Arctic Science and Technology Advice with Ministries", organised by Division for Multilateral Diplomacy, United Nations Institute for Training and Research (UNITAR), Feb-Mar 2022 (online). 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Policymakers/politicians
Results and Impact Took part in the science -policy dialogue on engaging Science and Policy through UN webinar series "Enhancing International Scientific Cooperation: Arctic Science and Technology Advice with Ministries", organised by Division for Multilateral Diplomacy, United Nations Institute for Training and Research (UNITAR), Feb-Mar 2022 (online). Environmental minsters from the Arctic Circle countries, along with the Arctic Council representatives were participating in the exchange. The communication barriers between Arctic scientific communities and policy we discussed and actions to overcome these were suggested.
Year(s) Of Engagement Activity 2022
 
Description Presentation at the EGU 2018: Aksenov, Y., Rynders, S., Hosekova, L., Feltham, D., Nurser, A. J., Madec, G., ... & Coward, A. (2018, April). Waves, Ice and Ocean in future projections of the Arctic and Southern Ocean. In EGU General Assembly Conference Abstracts (Vol. 20, p. 14180). 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Presentation delivered at the EGU General Assembly Conference Abstracts (Vol. 20, p. 14180). New data and results made available for the professionals and media. discussion followed the presentation helped to shape science directions.
Year(s) Of Engagement Activity 2018
 
Description Presentation at the UN Climate Change Conference (COP25) in Madrid for the Cryosphere Pavilion: "The New Arctic: The impact of change in Arctic Ocean sea ice on marine ecosystems and maritime industries?" 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Policymakers/politicians
Results and Impact Presented at the UN Climate Change Conference (COP25) in Madrid. Delivered a talk at the Cryosphere Pavilion on the scientific evidence for climate change impacts in the Arctic and the consequences. Title: The New Arctic: The impact of change in Arctic Ocean sea ice on marine ecosystems and maritime industries
Year(s) Of Engagement Activity 2019