i-CREW-International Collaboration for Optimisation of Resource Recovery from Wastewater

Lead Research Organisation: University of Surrey
Department Name: Chemical Engineering

Abstract

To achieve a sustainable circular economy, recovery and recycling of useful resources needs to be prioritized. Metal contaminated industrial waste streams post great health and ecological concerns, but they are also a valuable source for recovery of useful resources like metals. Traditional metal recovery technologies involve high energy consumption and are chemically intensive. Bioelectrochemical systems such as microbial fuel cells (MFCs) have emerged as a new sustainable technology platform for removal and recovery of metal ions from industrial wastewaters. MFCs combine treatment of organic wastewater by microbial biofilms at the anode with the reduction of metal ions from metal-laden waste streams at cathode. So far, recovery of several metal ions like Cobalt, Chromium, Copper, Gold, Silver, Selenium, Vanadium, Zinc, etc., has been demonstrated.

Though promising, metal recovery using MFCs is a complex process and depends on large number of operational and design parameters such as, pH, redox potential of the metal ion, type of electrode materials, initial concentration of metal ions in the wastewater, etc. To optimize the process and maximize metal recovery using MFCs, more research is needed to understand the role of different determinant factors influencing the process.

In this international collaborative project, we combine the strengths of two world leading research groups based in UK and India, to develop a robust predictive optimisation tool that can be used to determine the design and operating conditions to maximize the recovery of metals from wastewaters. University of Surrey researchers, Dr. Siddharth Gadkari and Dr. Jhuma Sadhukhan, would develop the comprehensive mathematical models for process optimisation based on the experimental data from the laboratory of Dr. S Venkata Mohan.

Publications

10 25 50
publication icon
Gadkari S (2023) Techno-Economic Analysis of 2,3-Butanediol Production from Sugarcane Bagasse in ACS Sustainable Chemistry & Engineering

publication icon
Muazu R (2023) Hexavalent chromium waste removal via bioelectrochemical systems - a life cycle assessment perspective in Environmental Science: Water Research & Technology

 
Description We are currently looking into the sustainability performance of recovery metals from wastewater using bioelectrochemical systems. For this we are conducting a life cycle assessment (LCA) of the overall technology.
Exploitation Route Outcomes from this study would be useful for anyone interested in recovery of metals from wastewater. They can look into our LCA and use the approach to see if a particular process would be environmentally beneficial or not.
Sectors Chemicals,Energy,Environment,Manufacturing, including Industrial Biotechology

 
Description BioElectrochemical LIthium rEcoVEry (BELIEVE)
Amount £298,792 (GBP)
Funding ID BB/X011372/1 
Organisation Biotechnology and Biological Sciences Research Council (BBSRC) 
Sector Public
Country United Kingdom
Start 02/2023 
End 01/2025
 
Description Discussion with Johnson Matthey 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Industry/Business
Results and Impact We had a discussion with Johnson Matthey to suggest use of bioelectrochemical systems for Lithium recovery from spent Li-ion batteries.
The discussion led to the development of a project which subsequently received funding from UKRI (BB/X011372/1)
Year(s) Of Engagement Activity 2022