# Structure and dynamics of solar interior and other stars

Lead Research Organisation:
University of Sheffield

Department Name: Applied Mathematics

### Abstract

As in ST/F0023327/1

### Publications

Sood A
(2014)

*Detailed mathematical and numerical analysis of a dynamo model*in Astronomy & Astrophysics
Gascoyne A
(2011)

*Sensitivity of p-mode absorption on magnetic region properties and kernel functions*in Astronomy & Astrophysics
Reese D
(2009)

*Mode identification in rapidly rotating stars*in Astronomy & Astrophysics
Reese D
(2012)

*Estimating stellar mean density through seismic inversions*in Astronomy & Astrophysics
Sood A
(2013)

*Dynamic model of dynamo (magnetic activity) and rotation*in Astronomy & Astrophysics
Leprovost N
(2010)

*The influence of shear flow on the a- and ?-effects in helical MHD turbulence*in Geophysical & Astrophysical Fluid Dynamics
Sood A
(2016)

*Suppression of a laminar kinematic dynamo by a prescribed large-scale shear*in Journal of Physics A: Mathematical and Theoretical
Jain R
(2011)

*Interaction of p modes with a collection of thin magnetic tubes Interaction of p modes with magnetic tubes*in Monthly Notices of the Royal Astronomical Society
Burke K
(2011)

*On the effects of rotation on acoustic stellar pulsations: validity domains of perturbative methods and close frequency pairs Effects of rotation on acoustic pulsations*in Monthly Notices of the Royal Astronomical Society
Leprovost N
(2008)

*Dynamo quenching due to shear flow.*in Physical review letters
Leprovost N
(2008)

*Analytical theory of forced rotating sheared turbulence: the parallel case.*in Physical review. E, Statistical, nonlinear, and soft matter physics
Leprovost N
(2008)

*Analytical theory of forced rotating sheared turbulence: the perpendicular case.*in Physical review. E, Statistical, nonlinear, and soft matter physics
Leprovost N
(2009)

*Turbulent transport and dynamo in sheared magnetohydrodynamics turbulence with a nonuniform magnetic field.*in Physical review. E, Statistical, nonlinear, and soft matter physics
Newton A
(2013)

*On the self-organizing process of large scale shear flows*in Physics of Plasmas
Leprovost N
(2011)

*Generation of coherent magnetic fields in sheared inhomogeneous turbulence: No need for rotation?*in Physics of Plasmas
Sood A
(2016)

*DYNAMICAL MODEL FOR SPINDOWN OF SOLAR-TYPE STARS*in The Astrophysical Journal
Leprovost N
(2010)

*ON A STOCHASTIC MODEL FOR THE SPIN-DOWN OF SOLAR-TYPE STARS*in The Astrophysical Journal
Leprovost N
(2009)

*DYNAMO EFFICIENCY WITH SHEAR IN HELICAL TURBULENCE*in The Astrophysical JournalDescription | We developed a consistent theory of rotation, mixing and dynamos of the sun and other stars by utilising observational data showing a remarkably close correlation between the rotation rates and stellar activities. We achieving our main objectives of developing a consistent theory of solar rotation and mixing, of constructing a consistent theory of magnetic flux transport, of modelling a dynamo for the Sun and other stars and of elucidating the evolution of solar rotation coupled with dynamo. Furthermore, we have achieved our other original objectives of applying our helioseismic experience and expertise to test and constrain understanding of stellar evolution and structure of other stars and of developing the crucially important theory of pulsations of different (e.g. fast-rotating) stars. |

Exploitation Route | Our findings can be taken forward to make a key contribution to world-wide active research on the structure, dynamics and variability of the Sun, thereby advancing the understanding of stellar rotation and magnetism, e.g., stimulating future observational programmes. Our findings can also be used by researchers in different fields (e.g. environmental dynamics, geophysical/laboratory plasmas, etc) since the effect of rotation, large-scale shear flows, magnetic fields, mixing, etc, are also important in other systems. |

Sectors | Aerospace, Defence and Marine,Energy,Environment,Other |