# Theoretical Particle Physics Research

Lead Research Organisation:
University of Oxford

Department Name: Oxford Physics

### Abstract

Our overall aim is to elucidate the nature of matter and its fundamental interactions via a variety of phenomenological and theoretical studies. Of crucial importance will be the new results coming from the Large Hadron Collider (LHC) at CERN. The proposed research will improve our ability to predict the effects of the strong interactions (QCD) on the processes that will be studied at the LHC and develop efficient methods to determine the properties of any new states of matter discovered there. Both analytical and numerical methods will be used to study the properties of hadrons, strongly interacting bound states of quarks. Our research will seek to determine what lies beyond the Standard Model of the strong, weak and electromagnetic interactions, with the ultimate goal of providing a fully unified theory, including gravity. The most promising candidate theories will be studied, including Grand and superstring unification and theories with additional space dimensions. Laboratory, astrophysical and cosmological implications will be analysed to determine the most sensitive experimental tests of these theories. We hope these studies will lead to a complete understanding of the origin of mass, including an understanding of the quark, charged lepton and neutrino masses, mixing angles and CP violation, as well as of the nature of dark matter. In addition to having direct relevance to the LHC program, our research will have relevance to present and future neutrino and astroparticle experiments and to astrophysical and cosmological studies. In particular a concerted effort will be made to understand the nature of the dark matter and optimise strategies for detecting both direct and indirect signals. The implications of particle physics models for early universe processed such as inflation will also be studied.

### Organisations

### Publications

Banfi A
(2014)

*Quark masses in Higgs production with a jet veto*in Journal of High Energy Physics
Banfi A
(2012)

*Higgs- and Z-boson production with a jet veto.*in Physical review letters
Banfi A
(2012)

*NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production*in Journal of High Energy Physics
Baryakhtar M
(2013)

*Axion mediation*in Journal of High Energy Physics
Belyaev A
(2011)

*Mixed dark matter from technicolor*in Physical Review D
Beringer J
(2012)

*Review of Particle Physics*in Physical Review D
Bobeth C
(2013)

*New Physics in <span class="cmmi-10">G</span><sub><span class="cmr-7">12</span></sub><sup><span class="cmmi-7">s</span></sup> <span class="cmr-10">: (</span><span class="overline"><span class="cmmi-10">s</span></span><span class="cmmi-10">b</span><span class="cmr-10">)(</span><span class="overline">*in Acta Physica Polonica B
Bobeth C
(2014)

*On new physics in ?G d*in Journal of High Energy Physics
Bonnivard V
(2015)

*Dark matter annihilation and decay in dwarf spheroidal galaxies: the classical and ultrafaint dSphs*in Monthly Notices of the Royal Astronomical Society
Brod J
(2013)

*Constraints on CP-violating Higgs couplings to the third generation*in Journal of High Energy Physics
Buchbinder E
(2014)

*The moduli space of heterotic line bundle models: a case study for the tetra-quadric*in Journal of High Energy Physics
Buchbinder E
(2014)

*A heterotic standard model with B - L symmetry and a stable proton*in Journal of High Energy Physics
Buras A
(2012)

*Erratum: charm quark contribution to $ {K^{+}}\to {\pi^{+}}\nu \overline{\nu} $ at next-to-next-to-leading order*in Journal of High Energy Physics
Bursa F
(2013)

*SO(2N) and SU(N) gauge theories in 2 + 1 dimensions*in Journal of High Energy Physics
Campbell J
(2013)

*W and Z bosons in association with two jets using the POWHEG method*in Journal of High Energy Physics
Charbonnier A
(2011)

*Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future ?-ray observatories - I. The classical dwarf spheroidal galaxies ?-ray from dark matter annihilation in dSphs*in Monthly Notices of the Royal Astronomical Society
Colin J
(2017)

*High-redshift radio galaxies and divergence from the CMB dipole*in Monthly Notices of the Royal Astronomical Society
Colin J
(2011)

*Probing the anisotropic local Universe and beyond with SNe Ia data Probing the anisotropic Universe with SNe Ia*in Monthly Notices of the Royal Astronomical Society
Collaboration T
(2012)

*A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory*in Journal of Cosmology and Astroparticle Physics
Collaboration T
(2011)

*The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory*in Journal of Cosmology and Astroparticle Physics
Collaboration T
(2011)

*The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays*in Journal of Instrumentation
Collaboration T
(2013)

*Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory*in Journal of Cosmology and Astroparticle Physics
COOPER-SARKAR A
(2012)

*Quantifying uncertainties in the high-energy neutrino cross-section*in Pramana
Cooper-Sarkar A
(2011)

*The high energy neutrino cross-section in the Standard Model and its uncertainty*in Journal of High Energy Physics
Crivellin A
(2014)

*Dark matter direct detection constraints from gauge bosons loops*in Physical Review D
Davison R
(2012)

*Holographic zero sound at finite temperature*in Physical Review D
Dimopoulos S
(2014)

*Maximally natural supersymmetry.*in Physical review letters
Dreiner H
(2012)

*Gravitino cosmology with a very light neutralino*in Physical Review D
Ellis R
(2012)

*One-loop calculations in quantum field theory: From Feynman diagrams to unitarity cuts*in Physics Reports
Fields B
(2014)

*Big-Bang Nucleosynthesis*
Fields B
(2014)

*Big-Bang Nucleosynthesis*in Chin.Phys.
Frandsen M
(2012)

*Loop-induced dark matter direct detection signals from ?-ray lines*in Journal of Cosmology and Astroparticle Physics
Frandsen M
(2013)

*The unbearable lightness of being: CDMS versus XENON*in Journal of Cosmology and Astroparticle Physics
Frandsen M
(2011)

*Direct detection of dark matter in models with a light Z'*in Journal of High Energy Physics
Frandsen M
(2012)

*LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators*in Journal of High Energy Physics
Frandsen M
(2012)

*Resolving astrophysical uncertainties in dark matter direct detection*in Journal of Cosmology and Astroparticle Physics
Frandsen M
(2011)

*Light asymmetric dark matter from new strong dynamics*in Physical Review D
Gauld R
(2014)

*Minimal Z ' explanations of the B ? K * µ + µ - anomaly*in Physical Review D
Gauld R
(2016)

*The prompt atmospheric neutrino flux in the light of LHCb*in Journal of High Energy Physics
Gauld R
(2014)

*An explicit Z '-boson explanation of the B ? K * µ + µ - anomaly*in Journal of High Energy Physics
Giasemidis G
(2012)

*Spectral dimension flow on continuum random multigraph*
Giasemidis G
(2013)

*Aspects of dynamical dimensional reduction in multigraph ensembles of CDT*in Journal of Physics: Conference Series
Giasemidis G
(2012)

*Dynamical dimensional reduction in toy models of 4D causal quantum gravity*in Physical Review D
Giasemidis G
(2012)

*Multigraph models for causal quantum gravity and scale dependent spectral dimension*in Journal of Physics A: Mathematical and Theoretical
Goertz F
(2012)

*Bounds on warped extra dimensions from a Standard Model-like Higgs boson*in Physics Letters B
Gorbahn M
(2014)

*Searching for t ? c(u)h with dipole moments*in Journal of High Energy Physics
Gray J
(2014)

*String-Math 2013*
Gray J
(2013)

*All complete intersection Calabi-Yau four-folds*in Journal of High Energy Physics
Haisch U
(2013)

*On the importance of loop-induced spin-independent interactions for dark matter direct detection*in Journal of Cosmology and Astroparticle Physics
Haisch U
(2013)

*QCD effects in mono-jet searches for dark matter*in Journal of High Energy PhysicsDescription | Our overall aim is to elucidate the nature of matter and its fundamental interactions via a variety of phenomenological and theoretical studies. It was anticipated in the proposal that new results coming from the Large Hadron Collider (LHC) at CERN would be of crucial importance and the proposed research was intended to improve our ability to predict the effects of the strong interactions (QCD) on the processes that will be studied at the LHC and develop efficient methods to determine the properties of any new states of matter discovered there. This expectation was more than adequately fulfilled with the discovery of the Higgs boson - responsible for giving mass to all known fundamental particles in the Standard Model of the strong, weak and electromagnetic interactions. Our research also seeks to determine what lies beyond the Standard Model, with the ultimate goal of providing a fully unified theory, including gravity. Experimental progress here has not been as dramatic, in fact the Standard Model has been amazingly successful at explaining all laboratory measurements. Nevertheless there must be new physics, if only to account for the observed universe with its asymmetry between matter and antimatter, preponderance of dark over luminous matter, and inhomogeneities which grow under gravity into the large-scale structure of galaxies, clusters and superclusters ... none of which can be explained in the framework of the Standard Model. We have continued to make progress in studying promising candidate theories, including unified theories and theories with additional space dimensions. |

Exploitation Route | Our work forms part of a collective effort by theoretical physicists all over the world - each generation builds on the work of those who came before. |

Sectors | Education |

URL | http://www2.physics.ox.ac.uk/research/particle-theory |

Description | An innovative website to explain `Why String Theory?' (http://whystringtheory.com/) has received over 100,000 unique visitors. |

Sector | Education |

Impact Types | Cultural |

Description | Consolidated grant |

Amount | £717,699 (GBP) |

Funding ID | ST/P000770/1 |

Organisation | Science and Technologies Facilities Council (STFC) |

Sector | Public |

Country | United Kingdom |

Start | 09/2017 |

End | 09/2020 |