Theoretical Particle Physics Research
Lead Research Organisation:
University of Oxford
Department Name: Oxford Physics
Abstract
Our overall aim is to elucidate the nature of matter and its fundamental interactions via a variety of phenomenological and theoretical studies. Of crucial importance will be the new results coming from the Large Hadron Collider (LHC) at CERN. The proposed research will improve our ability to predict the effects of the strong interactions (QCD) on the processes that will be studied at the LHC and develop efficient methods to determine the properties of any new states of matter discovered there. Both analytical and numerical methods will be used to study the properties of hadrons, strongly interacting bound states of quarks. Our research will seek to determine what lies beyond the Standard Model of the strong, weak and electromagnetic interactions, with the ultimate goal of providing a fully unified theory, including gravity. The most promising candidate theories will be studied, including Grand and superstring unification and theories with additional space dimensions. Laboratory, astrophysical and cosmological implications will be analysed to determine the most sensitive experimental tests of these theories. We hope these studies will lead to a complete understanding of the origin of mass, including an understanding of the quark, charged lepton and neutrino masses, mixing angles and CP violation, as well as of the nature of dark matter. In addition to having direct relevance to the LHC program, our research will have relevance to present and future neutrino and astroparticle experiments and to astrophysical and cosmological studies. In particular a concerted effort will be made to understand the nature of the dark matter and optimise strategies for detecting both direct and indirect signals. The implications of particle physics models for early universe processed such as inflation will also be studied.
Organisations
Publications

Banfi A
(2014)
Quark masses in Higgs production with a jet veto
in Journal of High Energy Physics

Banfi A
(2012)
Higgs- and Z-boson production with a jet veto.
in Physical review letters

Banfi A
(2012)
NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production
in Journal of High Energy Physics

Baryakhtar M
(2013)
Axion mediation
in Journal of High Energy Physics

Belyaev A
(2011)
Mixed dark matter from technicolor
in Physical Review D

Beringer J
(2012)
Review of Particle Physics
in Physical Review D

Bobeth C
(2013)
New Physics in <span class="cmmi-10">G</span><sub><span class="cmr-7">12</span></sub><sup><span class="cmmi-7">s</span></sup> <span class="cmr-10">: (</span><span class="overline"><span class="cmmi-10">s</span></span><span class="cmmi-10">b</span><span class="cmr-10">)(</span><span class="overline">
in Acta Physica Polonica B

Bobeth C
(2014)
On new physics in ?G d
in Journal of High Energy Physics

Bonnivard V
(2015)
Dark matter annihilation and decay in dwarf spheroidal galaxies: the classical and ultrafaint dSphs
in Monthly Notices of the Royal Astronomical Society

Brod J
(2013)
Constraints on CP-violating Higgs couplings to the third generation
in Journal of High Energy Physics

Buchbinder E
(2014)
The moduli space of heterotic line bundle models: a case study for the tetra-quadric
in Journal of High Energy Physics

Buchbinder E
(2014)
A heterotic standard model with B - L symmetry and a stable proton
in Journal of High Energy Physics

Buras A
(2012)
Erratum: charm quark contribution to $ {K^{+}}\to {\pi^{+}}\nu \overline{\nu} $ at next-to-next-to-leading order
in Journal of High Energy Physics

Bursa F
(2013)
SO(2N) and SU(N) gauge theories in 2 + 1 dimensions
in Journal of High Energy Physics

Campbell J
(2013)
W and Z bosons in association with two jets using the POWHEG method
in Journal of High Energy Physics

Charbonnier A
(2011)
Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future ?-ray observatories - I. The classical dwarf spheroidal galaxies ?-ray from dark matter annihilation in dSphs
in Monthly Notices of the Royal Astronomical Society

Colin J
(2017)
High-redshift radio galaxies and divergence from the CMB dipole
in Monthly Notices of the Royal Astronomical Society

Colin J
(2011)
Probing the anisotropic local Universe and beyond with SNe Ia data Probing the anisotropic Universe with SNe Ia
in Monthly Notices of the Royal Astronomical Society

Collaboration T
(2012)
A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory
in Journal of Cosmology and Astroparticle Physics

Collaboration T
(2011)
The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory
in Journal of Cosmology and Astroparticle Physics

Collaboration T
(2011)
The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays
in Journal of Instrumentation

Collaboration T
(2013)
Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory
in Journal of Cosmology and Astroparticle Physics

COOPER-SARKAR A
(2012)
Quantifying uncertainties in the high-energy neutrino cross-section
in Pramana

Cooper-Sarkar A
(2011)
The high energy neutrino cross-section in the Standard Model and its uncertainty
in Journal of High Energy Physics

Crivellin A
(2014)
Dark matter direct detection constraints from gauge bosons loops
in Physical Review D

Davison R
(2012)
Holographic zero sound at finite temperature
in Physical Review D

Dimopoulos S
(2014)
Maximally natural supersymmetry.
in Physical review letters

Dreiner H
(2012)
Gravitino cosmology with a very light neutralino
in Physical Review D

Ellis R
(2012)
One-loop calculations in quantum field theory: From Feynman diagrams to unitarity cuts
in Physics Reports

Fields B
(2014)
Big-Bang Nucleosynthesis

Fields B
(2014)
Big-Bang Nucleosynthesis
in Chin.Phys.

Frandsen M
(2012)
Loop-induced dark matter direct detection signals from ?-ray lines
in Journal of Cosmology and Astroparticle Physics

Frandsen M
(2013)
The unbearable lightness of being: CDMS versus XENON
in Journal of Cosmology and Astroparticle Physics

Frandsen M
(2011)
Direct detection of dark matter in models with a light Z'
in Journal of High Energy Physics

Frandsen M
(2012)
LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators
in Journal of High Energy Physics

Frandsen M
(2012)
Resolving astrophysical uncertainties in dark matter direct detection
in Journal of Cosmology and Astroparticle Physics

Frandsen M
(2011)
Light asymmetric dark matter from new strong dynamics
in Physical Review D

Gauld R
(2014)
Minimal Z ' explanations of the B ? K * µ + µ - anomaly
in Physical Review D

Gauld R
(2016)
The prompt atmospheric neutrino flux in the light of LHCb
in Journal of High Energy Physics

Gauld R
(2014)
An explicit Z '-boson explanation of the B ? K * µ + µ - anomaly
in Journal of High Energy Physics

Giasemidis G
(2012)
Spectral dimension flow on continuum random multigraph

Giasemidis G
(2013)
Aspects of dynamical dimensional reduction in multigraph ensembles of CDT
in Journal of Physics: Conference Series

Giasemidis G
(2012)
Dynamical dimensional reduction in toy models of 4D causal quantum gravity
in Physical Review D

Giasemidis G
(2012)
Multigraph models for causal quantum gravity and scale dependent spectral dimension
in Journal of Physics A: Mathematical and Theoretical

Goertz F
(2012)
Bounds on warped extra dimensions from a Standard Model-like Higgs boson
in Physics Letters B

Gorbahn M
(2014)
Searching for t ? c(u)h with dipole moments
in Journal of High Energy Physics

Gray J
(2014)
String-Math 2013

Gray J
(2013)
All complete intersection Calabi-Yau four-folds
in Journal of High Energy Physics

Haisch U
(2013)
On the importance of loop-induced spin-independent interactions for dark matter direct detection
in Journal of Cosmology and Astroparticle Physics

Haisch U
(2013)
QCD effects in mono-jet searches for dark matter
in Journal of High Energy Physics
Description | Our overall aim is to elucidate the nature of matter and its fundamental interactions via a variety of phenomenological and theoretical studies. It was anticipated in the proposal that new results coming from the Large Hadron Collider (LHC) at CERN would be of crucial importance and the proposed research was intended to improve our ability to predict the effects of the strong interactions (QCD) on the processes that will be studied at the LHC and develop efficient methods to determine the properties of any new states of matter discovered there. This expectation was more than adequately fulfilled with the discovery of the Higgs boson - responsible for giving mass to all known fundamental particles in the Standard Model of the strong, weak and electromagnetic interactions. Our research also seeks to determine what lies beyond the Standard Model, with the ultimate goal of providing a fully unified theory, including gravity. Experimental progress here has not been as dramatic, in fact the Standard Model has been amazingly successful at explaining all laboratory measurements. Nevertheless there must be new physics, if only to account for the observed universe with its asymmetry between matter and antimatter, preponderance of dark over luminous matter, and inhomogeneities which grow under gravity into the large-scale structure of galaxies, clusters and superclusters ... none of which can be explained in the framework of the Standard Model. We have continued to make progress in studying promising candidate theories, including unified theories and theories with additional space dimensions. |
Exploitation Route | Our work forms part of a collective effort by theoretical physicists all over the world - each generation builds on the work of those who came before. |
Sectors | Education |
URL | http://www2.physics.ox.ac.uk/research/particle-theory |
Description | An innovative website to explain `Why String Theory?' (http://whystringtheory.com/) has received over 100,000 unique visitors. |
Sector | Education |
Impact Types | Cultural |
Description | Consolidated grant |
Amount | £717,699 (GBP) |
Funding ID | ST/P000770/1 |
Organisation | Science and Technologies Facilities Council (STFC) |
Sector | Public |
Country | United Kingdom |
Start | 09/2017 |
End | 09/2020 |