Nuclear Physics Consolidated Grant

Lead Research Organisation: University of Liverpool
Department Name: Physics

Abstract

The majority of the visible mass of the universe is made up of atomic nuclei that lie at the centre of atoms. Nuclear physics seeks to answer fundamental questions such as: "How do the laws of physics work when driven to the extremes? What are the fundamental constituents and fabric of the universe and how do they interact? How did the universe begin and how is it evolving? What is the nature of nuclear and hadronic matter?" The aim of our research is to study the properties of atomic nuclei and nuclear matter in order to answer these questions. No one yet knows how heavy a nucleus can be; in other words, just how many neutrons and protons can be made to bind together. We will study the heaviest nuclei that can be made in the laboratory and determine their properties which will allow better predictions to be made for the "superheavies". For lighter nuclei we will explore in the region of the proton and neutron drip lines, which are the borders between bound and unbound nuclei. We will determine more precisely than ever before the location of these drip lines. Nuclei beyond the proton drip line have so much electrical charge that they are highly unstable and try to achieve greater stability through the process of proton emission. We will investigate how nuclear behaviour is affected when protons become unbound.

For these exotic systems we will also explore how the nucleus prefers to rearrange its shape, which can be a sphere, rugby ball, pear, etc. and how it stores its energy among the possible degrees of freedom. We will also investigate how the properties of these nuclei develop as we make them spin faster and faster. We will try to determine the precise nature of ultra high spin states in heavy nuclei, just before the nucleus breaks up due to fission. By violently removing a nucleon from a nucleus in a nuclear reaction at high energies and measuring its properties, we can investigate to what extent the nucleon "feels" the influence of its neighbouring nucleons, whether it is correlated with them. Such information tells us about the nuclear force inside the nucleus at different inter-nucleon distances. Nuclear matter can exist in different phases, analogous to the solid, liquid, gas and plasma phases in ordinary substances. By varying the temperature, density, pressure and isospin asymmetry (the relative number of neutrons and protons), nuclear matter can undergo a transition from one phase to another. Thermodynamic properties nuclear matter and its phase transitions can be described by its equation of state. In extreme conditions of density and temperature (about 100 thousands times more than the temperature at the heart of the sun!), a phase transition should occur and quarks and gluons (of which the protons and neutrons are made of) should exist in a new state of matter called the Quark-Gluon Plasma. By colliding nuclei together at high energies, we will study properties of this new state of matter and how nuclear matter behaves as the isospin asymmetry and density vary. Such information is not only important for nuclear physics but also to understand neutron stars and other compact astrophysical objects.

This programme of research will employ a large variety of experimental methods to probe many aspects of nuclear structure and the phases of strongly interacting matter, mostly using instrumentation that we have constructed at several world-leading accelerator laboratories. The work will require a series of related experiments at a range of facilities in order for us to gain an insight into the answers to the questions posed above. These experiments will help theorists to refine and test their calculations that have attempted to predict the properties of nuclei and nuclear matter, often with widely differing results. The resolution of this problem will help us to describe complex many-body nuclear systems and better understand conditions in our universe a few fractions of a second after the big bang.

Planned Impact

Nuclear physics research and technology development has had a huge beneficial influence in our Society's everyday lives. Through energy production with low-carbon emission, radiation detection for national security or environmental monitoring, and cancer diagnosis and treatment in modern healthcare, the applications emerging from nuclear physics are numerous.

Recent high profile scientific discoveries include:
- The confirmation of the existence of the super heavy chemical element 115. In collaboration with Lund University, researchers from the University were able to present a way to directly identify new super heavy elements.
- The ISOLDE facility at CERN was used to successfully study the shape of the short-lived isotopes 220Rn and 224Ra, showing that the latter is pear-shaped. The results of the Liverpool-led measurements, that also have implications for atomic EDM measurements, received a large amount of interest from the media world-wide.
- The group used their expertise to build a detector system for the ALPHA antihydrogen experiment at CERN. The recent results from this experiment, where antimatter was trapped for more than 1000s, the first quantum transition was excited with microwaves, and measurements on antigravity reported, resulted in large scale media exposure.
- The work at ultra high spin in nuclei has been cited as one of the Science highlights of 2013 and in the major 2012 decadal report "Nuclear Physics: Exploring the Heart of Matter"

Liverpool has a number of established industrial links which benefit from its expertise in nuclear radiation measurements, modelling and instrumentation. These include GE Healthcare, BAE Systems, AWE, Canberra, Centronic, Kromek, Canberra Harwell, Ametek, John Caunt Scientific, National Nuclear Laboratory and Rapiscan. These links include the joint projects ProSPECTus, PorGamRays, PGRIS and GammakeV. The University has secured a prestigious four year STFC IPS Fellowship to maximise the impact of the STFC funded science portfolio. The role will deliver increased numbers of industrial studentships, enable "pump priming" of collaborative ideas and will facilitate potential staff exchanges with industrial collaborators.

The University Department of Physics is one of only three national training providers for the new Modernising Scientific Careers Clinical Science (Medical Physics) MSc, funded by the NHS. This MSc is delivered by the Nuclear Physics Group in collaboration with the Royal Liverpool University Hospital NHS Trust, the Clatterbridge Cancer Centre and the Merseyside NHS Training Consortium for Medical Physics & Clinical Engineering. This provides a unique opportunity to build collaborative research and Continuing Professional Development partnerships within the Healthcare sector.

The University of Liverpool hosts many events for schools aimed at promoting Physics. For Nuclear Physics in particular a series of masterclasses is run for schools aimed at year 12 pupils that are run twice per year and cater for about 60 students. These benefit from the nuclear physics expertise in the group and its excellent laboratory facilities where nuclear measurements can be made. Members of the group provide teacher training and go to schools to deliver lectures and demonstrations on both nuclear physics research and its applications. With the recent opening of the Central Teaching Laboratory (CTL) facility at the University, these activities will continue and expand during the grant period. The CTL has a dedicated laboratory for Nuclear Physics and radiation measurements and schools and outreach activities will be held on a regular basis with University support. Overall in 2012/13 more than 2000 school students attended outreach events at the CTL, each event having a strong nuclear component.

Publications

10 25 50

publication icon
Acharya S (2017) J/? Elliptic Flow in Pb-Pb Collisions at sqrt[s_{NN}]=5.02 TeV. in Physical review letters

 
Description The majority of the visible mass of the universe is made up of atomic nuclei that lie at the centre of atoms. Nuclear physics seeks to answer fundamental questions such as: "How do the laws of physics work when driven to the extremes? What are the fundamental constituents and fabric of the universe and how do they interact? How did the universe begin and how is it evolving? What is the nature of nuclear and hadronic matter?" The aim of our research is to study the properties of atomic nuclei and to measure the properties of hot nuclear matter in order to answer these questions.

No one yet knows how heavy a nucleus can be; in other words, just how many neutrons and protons can be made to bind together. We study the heaviest nuclei that can be made in the laboratory and determine their properties which will allow better predictions to be made for the "superheavies". For lighter nuclei wel explore in the region of the proton and neutron drip lines, which are the borders between bound and unbound nuclei. We will determine more precisely than ever before the location of these drip lines. Nuclei beyond the proton drip line have so much electrical charge that they are highly unstable and try to achieve greater stability through the process of proton emission. We investigate how nuclear behaviour is affected when protons become unbound.

For these exotic systems we will also explore how the nucleus prefers to rearrange its shape, which can be a sphere, rugby ball, pear, etc. and how it stores its energy among the possible degrees of freedom. We will also investigate how the properties of these nuclei develop as we make them spin faster and faster. Wel try to determine the precise nature of ultra high spin states in heavy nuclei, just before the nucleus breaks up due to fission. By violently removing a nucleon from a nucleus in a nuclear reaction at high energies and measuring its properties, we can investigate to what extent the nucleon "feels" the influence of its neighbouring nucleons, whether it is correlated with them. Such information tells us about the nuclear force inside the nucleus at different inter-nucleon distances.

Nuclear matter can exist in different phases, analogous to the solid, liquid, gas and plasma phases in ordinary substances. By varying the temperature, density or pressure, nuclear matter can undergo a transition from one phase to another. In extreme conditions of density and temperature (about 100 thousands times more than the temperature at the heart of the sun!), a phase transition should occur and quarks and gluons (of which the protons and neutrons are made of) should exist in a new state of matter called the Quark-Gluon Plasma. By colliding nuclei together at high energies at the Large Hadron Collider at CERN, we will study properties of this new state of matter. Such information is not only important for nuclear physics but also to understand neutron stars and other compact astrophysical objects.

This programme of research employs a large variety of experimental methods to probe many aspects of nuclear structure and the phases of strongly interacting matter, mostly using instrumentation that we have constructed at several world-leading accelerator laboratories. The work requires a series of related experiments at a range of facilities in order for us to gain an insight into the answers to the questions posed above. These experiments help theorists to refine and test their calculations that have attempted to predict the properties of nuclei and nuclear matter, often with widely differing results. The resolution of this problem will help us to describe complex many-body nuclear systems and better understand conditions in our universe a few fractions of a second after the big bang. Highlights include:
? The confirmation of the existence of the superheavy chemical element 117, which was an APS
top 10 physics news story in 2014. In collaboration with Lund University and GSI, researchers
from Liverpool were able to present a way to directly identify new superheavy elements. This
led to element 117 being named tennessine (Ts) in 2016.
? The ISOLDE facility at CERN was used to successfully study the shape of the short-lived
isotopes 220Rn and 224Ra. The data show that while 224Ra is pear-shaped, 220Rn does not assume
the fixed shape of a pear but rather vibrates about this shape. The results of the Liverpool-led
measurements, that also have implications for atomic EDM measurements, was selected as a top
10 breakthrough in physics by Physics World in 2013 and continues to receive a large amount of
interest from the media world-wide.
? The group used their expertise to build a detector system for the ALPHA antihydrogen
experiment at CERN. The recent results from this experiment, where antimatter was trapped for
more than 1000s, the first quantum transition was excited with microwaves, and measurements
on antigravity reported, resulted in large scale media exposure.
? The work at ultra-high spin in nuclei has been cited as one of the Science highlights of 2013 and
in the major 2012 decadal report "Nuclear Physics: Exploring the Heart of Matter" and more
recently as an article in the journal celebrating the Bohr, Mottelson and Rainwater Nobel prize.
? The measurement by the ALICE Collaboration at the LHC of the mass difference between
deuteron and anti-deuteron and between 3He and anti-3He nuclei was published in Nature and
received attention in the international news media. This was aided by the video summary of the
paper produced in association with Nature. Article metrics show that this paper was in the top
1% for online attention, for papers of a similar age.


Recent high-profile scientific discoveries include:

- The confirmation of the existence of the superheavy chemical element 117, which was an APS top 10 physics news story
in 2014. In collaboration with Lund and GSI, researchers from Liverpool demonstrated a way to identify new elements
directly. This led to element 117 being named tennessine in 2016.
- ISOLDE was used to study the shape of the short-lived isotopes 220Rn and 224Ra. The data show that while 224Ra is
pear shaped, 220Rn vibrates about this shape. The results of the Liverpool-led measurements, that also have implications
for atomic EDM measurements, was selected as a top 10 breakthrough in physics by Physics World in 2013 and continues
to receive strong interest from the media world-wide.
- The work at ultra-high spin in nuclei has been cited as one of the Science highlights of 2013 and in the major 2012
decadal report "Nuclear Physics: Exploring the Heart of Matter" and more recently as an article in the journal celebrating
the Bohr, Mottelson and Rainwater Nobel prize.
- The ALICE measurement of the mass difference between 2H/anti-2H and 3He/anti-3He nuclei was published in Nature
with a video summary and received attention in the international news media. Article metrics show that this paper was in
the top 1% for online attention.
Exploitation Route This is part of an ongoing research plan for the nuclear physics community. It is fully aligned with the NuPECC Long Range Plan, see http://www.nupecc.org/index.php?display=lrp2016/main
Sectors Digital/Communication/Information Technologies (including Software)

Education

Electronics

Energy

Environment

Healthcare

Security and Diplomacy

 
Description Communications and Engagement Scientific discovery: Scientific highlights and news from the UK community are reported on a web site hosted by the Daresbury Group, a monthly Nuclear Physics Newsletter and there are plans going forward to 'push' these highlights on social (and more traditional) media. Recent high profile scientific discoveries, which have made a huge international impact include: ? The confirmation of the existence of the superheavy chemical element 117, which was an APS top 10 physics news story in 2014. In collaboration with Lund University and GSI, researchers from Liverpool were able to present a way to directly identify new superheavy elements. This led to element 117 being named tennessine (Ts) in 2016. ? The ISOLDE facility at CERN was used to successfully study the shape of the short-lived isotopes 220Rn and 224Ra. The data show that while 224Ra is pear-shaped, 220Rn does not assume the fixed shape of a pear but rather vibrates about this shape. The results of the Liverpool-led measurements, that also have implications for atomic EDM measurements, was selected as a top 10 breakthrough in physics by Physics World in 2013 and continues to receive a large amount of interest from the media world-wide. ? The group used their expertise to build a detector system for the ALPHA antihydrogen experiment at CERN. The recent results from this experiment, where antimatter was trapped for more than 1000s, the first quantum transition was excited with microwaves, and measurements on antigravity reported, resulted in large scale media exposure. ? The work at ultra-high spin in nuclei has been cited as one of the Science highlights of 2013 and in the major 2012 decadal report "Nuclear Physics: Exploring the Heart of Matter" and more recently as an article in the journal celebrating the Bohr, Mottelson and Rainwater Nobel prize. ? The measurement by the ALICE Collaboration at the LHC of the mass difference between deuteron and anti-deuteron and between 3He and anti-3He nuclei was published in Nature and received attention in the international news media. This was aided by the video summary of the paper produced in association with Nature. Article metrics show that this paper was in the top 1% for online attention, for papers of a similar age. There are a number of scientific beneficiaries outside of nuclear physics. For example, ALICE data on anti-nuclei production ( ) are useful for estimating background in dark matter searches and the development of germanium detector sensors has greatly benefited the neutrinoless double beta decay community (GERDA and Majorana collaborations). These science discoveries and associated technical advances have been recognised by the last three IOP Rutherford Medal and Prize awards to Butler (2012), Nolan (2014) and Simpson (2016). Links with Industry and wider applications Historically, nuclear physics has made important contributions to applied science for the benefit of society. The first accelerators were developed to study nuclear phenomena and more recently proton and carbon beam cancer therapy being driven largely by the international Nuclear Physics community. Many of the detection systems used for medical imaging also have their origins in nuclear physics research (SPECT, PET, MRI).The Nuclear Physics community continues to have a very productive collaboration with industry, the University of Liverpool and STFC Daresbury Laboratory have significant industrial engagement programmes which support knowledge exchange and the development of future REF returnable impact cases with a focus on nuclear measurement techniques and instrumentation. Industrial collaborators include AWE, Canberra, Centronic, Kromek, Ametek (Ortec), John Caunt Scientific, Metropolitan Police, MoD, National Nuclear Laboratory (NNL), Rapiscan, Sellafield Ltd. and a large number of NHS Trusts. Selected existing projects include ProSPECTus, PGRIS, GammakeV, GRi and BEGe/SAGe. The researchers also have an excellent knowledge of modelling techniques using Monte Carlo codes. These are becoming increasingly important to predict the behaviour of systems before large commitments are made. Example case study 1: University of Liverpool, STFC Daresbury Laboratory & Canberra The University of Liverpool, STFC Daresbury Laboratory and Canberra are working together to commercialise gamma-ray imaging systems with relevance to the Nuclear Decommissioning and Security sectors. Mobile and portable imaging systems are being field trialled as part of funded projects. Support has been secured both from potential end users and through the STFC Innovation Partnership Scheme programme. The same consortium is driving the technology transfer to enable next generation SPECT (Single Photon Emission Computed Tomography) through the ProSPECTus project. Example case study 2: University of Liverpool, STFC Daresbury Laboratory and Royal Liverpool University Hospital The Medical Training and Research Laboratory (MTRL) is a joint initiative between the University of Liverpool, the Royal Liverpool University and Broadgreen Hospitals and STFC Daresbury Laboratory, which delivers hands-on training in medical imaging and develops next generation imaging techniques. The MTRL houses a SPECT/CT scanner that allows students to receive a firstclass training experience away from the daily pressures of the hospital environment, where there is often a long wait for access to such in-demand scanning equipment. The facility also allows researchers to test new imaging algorithms and instrumentation systems that are designed to be more efficient and of higher quality for medical diagnosis. With such a facility, projects such as ProSPECTus that were inspired by techniques used in cutting-edge Nuclear Physics research instrumentation for AGATA, can be tested and proven against existing equipment by taking images of medical phantoms and comparing them against existing current technology. The University of Liverpool has secured a four year STFC IPS Fellowship to maximise the impact of the STFC funded science portfolio. The Fellow (Dr M. Palumbo) is working closely with academics within the Department of Physics, STFC Daresbury Laboratory and the Cockcroft Institute for Accelerator Science. The development of a coherent collaborative strategy is key to maximising the impact with both internal and external organisations. The technology readiness level (TRL) of each of these collaborative knowledge exchange projects has been evaluated as part of the development of a commercialisation strategy. The TRL level of these projects is summarised in figure 1. The route to market for projects indicated as TRL level 4 and above has been established.The IPS Fellow role is delivering increased numbers of industrial studentships, enabling "pump priming" of collaborative ideas through appropriate routes such as mini-IPS or mini-KTP projects while facilitating staff exchanges with industrial collaborators. The ongoing development of long term strategic relationships with industrial and other external partner organisations is crucial. This should facilitate Innovate UK, H2020 and National Institute for Health Research funded joint projects. The Daresbury group has regular interactions with the STFC BID. Healthcare: The University of Liverpool Department of Physics is one of only three national training providers for the Modernising Scientific Careers Clinical Science (Medical Physics) MSc, funded by the NHS. This MSc is delivered in collaboration with the Royal Liverpool University Hospital NHS Trust, the Clatterbridge Cancer Centre and the Merseyside NHS Training Consortium for Medical Physics & Clinical Engineering. This provides a unique opportunity to build collaborative research and Continuing Professional Development partnerships within the Healthcare sector. Security: The impact strategy relies on the exploitation of the sensor technology and associated instrumentation and techniques that exists within the research groups. New opportunities for funding R&D have been identified and a key end user, the Metropolitan Police, is lined up to trial next generation technology. STFC has recently supported the creation of a Global Challenge network in "Nuclear Security Science" (NuSec). The network promotes research and technology in Nuclear Security, with an emphasis on radiological detection techniques and systems. Dr A Boston is a member of the network management board (http://www.nusec.uk). Energy: The University Engineering, Electrical Engineering and Physics Departments together with STFC Daresbury Laboratory are in the process of forming a Nuclear Engineering alliance, which will maximise the exploitation of institutional expertise in autonomous systems, sensors, virtual engineering and modelling. Public Engagement: Beyond satisfying human curiosity around the workings of nature, pure research in nuclear physics has also tremendous societal impact. Our groups have an excellent track record in public engagement and outreach in a subject that has a natural fascination for the public. Indeed, it fulfils the important role of educating the public in nuclear radiation and its wider aspects, both positive and negative and is important to drive interest in the study of STEM subjects.Nuclear Physicists are frequently invited to share their knowledge and talk about their research at schools, science festivals and community groups. STFC Daresbury Laboratory held an open week in July where up to 10,000 members of the public, industry and schools were in attendance (http://www.stfc.ac.uk/public-engagement/see-the-science/daresbury-open-week/); members of both the Daresbury and Liverpool groups took part. In addition to this over 1000 students, teachers and the public are engaged through outreach activities each year. Nuclear Physics is also a key part of the GCSE and A level science curriculum and teachers are always looking for ways to enrich the teaching of nuclear physics in the classroom and often approach our community. The community has responded to this need by running nuclear physics continuing professional development workshops for teachers and masterclasses for students. The teach the "teachers" workshops are supported by the Nuclear Institute and are held in several different locations in June and July. They are always oversubscribed and reach 100 science teachers every year. Dr Laura Harkness-Brennan has given public lectures at Daresbury laboratory and Prof Jim Al-Khalili a general interest seminar open to all staff at the laboratory. The Nuclear Physics masterclass has been extremely successful (reaching over 250 students in 2015 alone) in enthusing young people to pursue careers in Physics. The Masterclasses are one day events for GSCE or A-level students that focus on the delights of nuclear physics. The events include lectures, laboratory experiments, hand on workshops, careers activities, computer sessions and facility tours. Masterclasses have been run at the Universities of Liverpool, Manchester, Surrey and Birmingham as well as STFC Daresbury Laboratory and will continue throughout the period of the grant award. Events are supported and organised by the STFC outreach team. The University of Derby group has experience of running ALICE masterclasses and these be run at all three institutions throughout the period of the grant award. The University of Liverpool hosts the state-of-the-art Central Teaching Laboratory (CTL) facility. The CTL has a dedicated laboratory for Nuclear Physics and radiation measurements and schools and outreach activities will be held on a regular basis with University support. In November 2016 the Central Teaching Laboratory will host a Science Jamboree for 300 Cubs, Beavers and Brownies. We also plan a family day in this facility with the aim of improving knowledge of both nuclear physics research and applications in energy, security and healthcare. In Liverpool these activities are run by the Physical Science outreach group, which for physics is led by Dr Helen Vaughan. Delivery is by members of the nuclear physics group including students who have been trained for the work. These outreach events also include Women in Physics workshops, organised for girls in Year 12 studying AS and/or A2 Physics. Media Interaction The Liverpool Nuclear Physics group has an extensive list of media interactions. In particular Professor Peter Butler (http://ns.ph.liv.ac.uk/pab/profile/Outreach.htm) and Dr Laura Harkness- Brennan have contributed to BBC TV and Radio broadcasts and have recorded Podcasts and other online resources for public engagement. The ALICE experiment featured prominently in the recent BBC production presented by Jim Al-Khalili on The Beginning and End on the Universe (http://www.bbc.co.uk/programmes/b07591mr/episodes/player). Professor Rodi Herzberg was a scientific advisor on Jim Al-Kalkili's series on the Atom. Going forward the Department of Physics is reviewing its media interaction strategy with a view to coordinate activity across the Nuclear Physics, Particle Physics and Accelerator Science. The Daresbury Nuclear Physics group media interactions are managed through STFC Communications.
First Year Of Impact 2014
Sector Electronics,Energy,Environment,Healthcare,Security and Diplomacy
Impact Types Cultural

Societal

Economic

 
Description Digital Nuclear Measurement Training of Practitioners in the Nuclear Sector
Geographic Reach National 
Policy Influence Type Influenced training of practitioners or researchers
Impact Delivered several training workshops for members of the nuclear sector to develop skills and knowledge relevant to Digital signal processing with radiation detectors. This included the participants logging in remotely to operate and acquire data with radiation detectors in Liverpool. There were also seminars aimed at developing knowledge and skills in this area as well as showcasing the research activities in several funded UKRI projects, relevant to the topic.
 
Description NuPECC
Geographic Reach Multiple continents/international 
Policy Influence Type Membership of a guideline committee
Impact The NuPECC Long Range Plan for all aspects of Nuclear Physics was published in 2017. NuPECC's mission is "to provide advice and make recommendations on the development, organisation, and support of European nuclear research and of particular projects." The report features the recommendations of NuPECC for the development of nuclear physics research in Europe followed by a comprehensive chapter on large and smaller facilities, existing, under construction or planned. The report has been discussed with national funding agencies by the NuPECC task force to foster awareness and good alignment of the research portfolios.
URL http://www.nupecc.org/pub/lrp17/lrp2017.pdf
 
Description AGATA: Precision Spectroscopy of Exotic Nuclei
Amount £140,479 (GBP)
Funding ID ST/T003456/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 09/2019 
End 03/2024
 
Description Development of topographical data analysis methods for AGATA
Amount £100,000 (GBP)
Funding ID 2021480 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 09/2017 
End 09/2021
 
Description Measurement of moon anomalous magnetic moment of g-2 experiment
Amount £545,073 (GBP)
Funding ID 2113472 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 09/2018 
End 03/2022
 
Description Nuclear Physics Consolidated Grant
Amount £2,568,632 (GBP)
Funding ID ST/P004598/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 09/2017 
End 09/2022
 
Description Quantitative SPECT for dosimetry of 131I molecular radiotherapy
Amount £1,033,798 (GBP)
Funding ID 1643463 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 09/2015 
End 03/2019
 
Description STFC Standard Grant
Amount £419,256 (GBP)
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 12/2009 
End 05/2013
 
Description Sub-voxel position identification in Cadmium Zinc Telluride detectors for Low Dose Molecular Breast Imaging
Amount £545,073 (GBP)
Funding ID 2112967 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 09/2018 
End 03/2022
 
Description The Tale of Two Tunnels
Amount £99,465 (GBP)
Funding ID ST/S000127/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 04/2018 
End 04/2023
 
Title SAGE GEANT4 Simulation 
Description A full GEANT4 Monte Carlo Model of the SAGE spectrometer in the laboratory. It allows the modelling of the response of the instrument to incoming radiation and greatly improves the ability to make precise quantitative absolute measurements. 
Type Of Material Improvements to research infrastructure 
Year Produced 2014 
Provided To Others? Yes  
Impact Several publications have used the toolkit and were possible or substantially improved through the use of it. 
 
Description AIDA 
Organisation Daresbury Laboratory
Department Nuclear Physics Support Group
Country United Kingdom 
Sector Academic/University 
PI Contribution Overall design specification, testing and systems integration.
Collaborator Contribution Intellectual contributions to this research and development project, particularly in the ASIC design.
Impact Development of the Advanced Implantation Detector Array (AIDA) for experimental research programmes at GSI/FAIR.
Start Year 2007
 
Description AIDA 
Organisation Rutherford Appleton Laboratory
Country United Kingdom 
Sector Academic/University 
PI Contribution Overall design specification, testing and systems integration.
Collaborator Contribution Intellectual contributions to this research and development project, particularly in the ASIC design.
Impact Development of the Advanced Implantation Detector Array (AIDA) for experimental research programmes at GSI/FAIR.
Start Year 2007
 
Description AIDA 
Organisation University of Edinburgh
Department School of Physics and Astronomy
Country United Kingdom 
Sector Academic/University 
PI Contribution Overall design specification, testing and systems integration.
Collaborator Contribution Intellectual contributions to this research and development project, particularly in the ASIC design.
Impact Development of the Advanced Implantation Detector Array (AIDA) for experimental research programmes at GSI/FAIR.
Start Year 2007
 
Description ALICE Collaboration 
Organisation European Organization for Nuclear Research (CERN)
Department ALICE Collaboration
Country Switzerland 
Sector Public 
PI Contribution Data analysis of LHC data from Run1 and Run2 (heavy-flavour physics working group). ITS upgrade project: Monte Carlo simulations, construction of modules and staves for the Outer Barrel. Supervision of UG and PhD student projects. Meetings of ALICE-UK research groups (Univ. of Birmingham, Univ. of Liverpool, STFC Daresbury). Presentations at conferences, meetings and workshops.
Collaborator Contribution Access to beam time, data, GRID and other CERN infrastructure and resources, ALICE collaboration international network etc.
Impact Publications. Training of UG and PhD students and research staff. Invitations to speak at meetings, workshops, conferences.
Start Year 2012
 
Description COLLAPS, ISOLDE Laser Spectroscopy 
Organisation Catholic University of Louvain
Country Belgium 
Sector Academic/University 
PI Contribution Proposal and running of experiments. Contribution to equipment and consumables costs.
Collaborator Contribution Provision of laboratory apparatus and expertise.
Impact Active experiments directly related to the research proposal have been approved by the local Programme Advisory Committee. The experimental apparatus required and accelerator beam time have been made available. Several publications have been published or are in preparation.
Start Year 2013
 
Description COLLAPS, ISOLDE Laser Spectroscopy 
Organisation European Organization for Nuclear Research (CERN)
Department CERN - ISOLDE
Country Switzerland 
Sector Academic/University 
PI Contribution Proposal and running of experiments. Contribution to equipment and consumables costs.
Collaborator Contribution Provision of laboratory apparatus and expertise.
Impact Active experiments directly related to the research proposal have been approved by the local Programme Advisory Committee. The experimental apparatus required and accelerator beam time have been made available. Several publications have been published or are in preparation.
Start Year 2013
 
Description COLLAPS, ISOLDE Laser Spectroscopy 
Organisation Heidelberg University
Country Germany 
Sector Academic/University 
PI Contribution Proposal and running of experiments. Contribution to equipment and consumables costs.
Collaborator Contribution Provision of laboratory apparatus and expertise.
Impact Active experiments directly related to the research proposal have been approved by the local Programme Advisory Committee. The experimental apparatus required and accelerator beam time have been made available. Several publications have been published or are in preparation.
Start Year 2013
 
Description COLLAPS, ISOLDE Laser Spectroscopy 
Organisation Technical University of Darmstadt
Country Germany 
Sector Academic/University 
PI Contribution Proposal and running of experiments. Contribution to equipment and consumables costs.
Collaborator Contribution Provision of laboratory apparatus and expertise.
Impact Active experiments directly related to the research proposal have been approved by the local Programme Advisory Committee. The experimental apparatus required and accelerator beam time have been made available. Several publications have been published or are in preparation.
Start Year 2013
 
Description GREAT collaboration 
Organisation University of Jyvaskyla
Department Department of Physics
Country Finland 
Sector Academic/University 
PI Contribution Constructed GREAT spectrometer and TDR DAQ system. Spokesperson of many experiments.
Collaborator Contribution facility
Impact 24 publications
 
Description GSI Laser Spectroscopy 
Organisation Helmholtz Association of German Research Centres
Department GSI Helmholtz Centre for Heavy Ion Research
Country Germany 
Sector Public 
PI Contribution Assist in set-up and running of experiments. Co-spokesperson of proposal (ENSAR coordinator).
Collaborator Contribution Equipment, facility and expertise.
Impact At least two publications currently in press. First measurement of an optical resonance in nobelium.
Start Year 2014
 
Description GSI Laser Spectroscopy 
Organisation Helmholtz Association of German Research Centres
Department Helmholtz Institute Mainz
Country Germany 
Sector Academic/University 
PI Contribution Assist in set-up and running of experiments. Co-spokesperson of proposal (ENSAR coordinator).
Collaborator Contribution Equipment, facility and expertise.
Impact At least two publications currently in press. First measurement of an optical resonance in nobelium.
Start Year 2014
 
Description GSI Laser Spectroscopy 
Organisation Johannes Gutenberg University of Mainz
Country Germany 
Sector Academic/University 
PI Contribution Assist in set-up and running of experiments. Co-spokesperson of proposal (ENSAR coordinator).
Collaborator Contribution Equipment, facility and expertise.
Impact At least two publications currently in press. First measurement of an optical resonance in nobelium.
Start Year 2014
 
Description GSI Laser Spectroscopy 
Organisation Technical University of Darmstadt
Country Germany 
Sector Academic/University 
PI Contribution Assist in set-up and running of experiments. Co-spokesperson of proposal (ENSAR coordinator).
Collaborator Contribution Equipment, facility and expertise.
Impact At least two publications currently in press. First measurement of an optical resonance in nobelium.
Start Year 2014
 
Description GSI Laser Spectroscopy 
Organisation University of Leuven
Country Belgium 
Sector Academic/University 
PI Contribution Assist in set-up and running of experiments. Co-spokesperson of proposal (ENSAR coordinator).
Collaborator Contribution Equipment, facility and expertise.
Impact At least two publications currently in press. First measurement of an optical resonance in nobelium.
Start Year 2014
 
Description JYFL Laser Spectroscopy 
Organisation University of Jyvaskyla
Country Finland 
Sector Academic/University 
PI Contribution Running of the laser spectroscopy set-up, contribution to equipment/consumable funding, spokesperson of several experiments.
Collaborator Contribution Provision of laboratory space, equipment and accelerator use.
Impact Active experimental proposals have been awarded accelerator beam time by the local Programme Advisory Committee. The experimental apparatus required to carry out the research has now been commissioned. Many publications in progress.
Start Year 2013
 
Description JYFL Laser Spectroscopy 
Organisation University of Manchester
Country United Kingdom 
Sector Academic/University 
PI Contribution Running of the laser spectroscopy set-up, contribution to equipment/consumable funding, spokesperson of several experiments.
Collaborator Contribution Provision of laboratory space, equipment and accelerator use.
Impact Active experimental proposals have been awarded accelerator beam time by the local Programme Advisory Committee. The experimental apparatus required to carry out the research has now been commissioned. Many publications in progress.
Start Year 2013
 
Description LISA 
Organisation Daresbury Laboratory
Department Nuclear Physics Support Group
Country United Kingdom 
Sector Academic/University 
PI Contribution Intellectual contributions to experimental research programme.
Collaborator Contribution Intellectual contribution to experimental research programme.
Impact Joint publications.
 
Description LISA 
Organisation University of the West of Scotland
Department School of Physics
Country United Kingdom 
Sector Academic/University 
PI Contribution Intellectual contributions to experimental research programme.
Collaborator Contribution Intellectual contribution to experimental research programme.
Impact Joint publications.
 
Description MINIBALL collaboration 
Organisation European Organization for Nuclear Research (CERN)
Department ISOLDE Radioactive Ion Beam Facility
Country Switzerland 
Sector Public 
PI Contribution Expertise on Coulomb Excitation analysis, spokespersons of 2 active ISOLDE experiments
Impact several publications
 
Description MINIBALL collaboration 
Organisation Lund University
Department Department of Physics
Country Sweden 
Sector Academic/University 
PI Contribution Expertise on Coulomb Excitation analysis, spokespersons of 2 active ISOLDE experiments
Impact several publications
 
Description MINIBALL collaboration 
Organisation University of Cologne
Department Department of Physics
Country Germany 
Sector Academic/University 
PI Contribution Expertise on Coulomb Excitation analysis, spokespersons of 2 active ISOLDE experiments
Impact several publications
 
Description MINIBALL collaboration 
Organisation University of Leuven
Department Department of Physics and Astronomy
Country Belgium 
Sector Academic/University 
PI Contribution Expertise on Coulomb Excitation analysis, spokespersons of 2 active ISOLDE experiments
Impact several publications
 
Description Research collaborators 
Organisation Daresbury Laboratory
Department Nuclear Physics Support Group
Country United Kingdom 
Sector Academic/University 
PI Contribution Intellectual contributions to research programme and joint research papers.
Collaborator Contribution Intellectual contributions to research programme and joint research papers.
Impact Many joint research papers.
 
Description Research collaborators 
Organisation University of Jyvaskyla
Department Department of Physics
Country Finland 
Sector Academic/University 
PI Contribution Intellectual contributions to research programme and joint research papers.
Collaborator Contribution Intellectual contributions to research programme and joint research papers.
Impact Many joint research papers.
 
Description Research collaborators 
Organisation University of Surrey
Department Department of Physics
Country United Kingdom 
Sector Academic/University 
PI Contribution Intellectual contributions to research programme and joint research papers.
Collaborator Contribution Intellectual contributions to research programme and joint research papers.
Impact Many joint research papers.
 
Description TRIUMF Laser Spectroscopy 
Organisation McGill University
Country Canada 
Sector Academic/University 
PI Contribution Proposal and running of experiments. Contribution to equipment and consumables.
Collaborator Contribution Provision of laboratory space, apparatus and experience.
Impact Active experiments directly related to the research proposal have been approved by the local Programme Advisory Committee. The experimental apparatus required and accelerator beam time have been made available.
Start Year 2013
 
Description TRIUMF Laser Spectroscopy 
Organisation TRIUMF
Country Canada 
Sector Academic/University 
PI Contribution Proposal and running of experiments. Contribution to equipment and consumables.
Collaborator Contribution Provision of laboratory space, apparatus and experience.
Impact Active experiments directly related to the research proposal have been approved by the local Programme Advisory Committee. The experimental apparatus required and accelerator beam time have been made available.
Start Year 2013
 
Description eV Products (Kromek USA) 
Organisation eV Products, Inc
Country United States 
Sector Private 
PI Contribution A PhD student from the project team went to eV products in USA for 3 weeks to conduct NEMA tests of a CZT SPECT system.
Collaborator Contribution The partners financed the cost of the student visit, including hotel and travel. They also provide supervision and we are continuing to analyse the results following the visit.
Impact The results are currently under analysis. It is expected they will be publishable. The student also developed new skills.
Start Year 2016
 
Description ALICE guide visits 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact Visits for public to ALICE detector at CERN , ongoing program done at CERN
Year(s) Of Engagement Activity 2018
 
Description Advances in semiconductor sensors, Gamma-ray imaging systems, South Dakota, USA 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact International conference on germanium detector systems.
Year(s) Of Engagement Activity 2014
 
Description BBC Radio 4 Interview - Strontium 90 
Form Of Engagement Activity A broadcast e.g. TV/radio/film/podcast (other than news/press)
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Radio Interview with BBC Radio 4 as part of a special program on strontium.
Year(s) Of Engagement Activity 2015
 
Description Consulting with BBC for "Inside Sellafield" Documentary 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Media (as a channel to the public)
Results and Impact Consulted for BBC documentary "Inside Sellafield", including script preparation, editing and advising on experiments.
Year(s) Of Engagement Activity 2015
 
Description Contribution to BBC Earth article 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Contributed to a BBC Earth online article "How do we know that things are really made of atoms".
Year(s) Of Engagement Activity 2015
URL http://www.bbc.co.uk/earth/story/20151120-how-do-we-know-that-things-are-really-made-of-atoms
 
Description From AGATA to Gamma-ray imaging: Status and perspectives, Uof Notre Dame 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact University of Notre Dame conference
Year(s) Of Engagement Activity 2014
 
Description International Women Day 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Other audiences
Results and Impact Panel Q&A ans discussion around the screening of the film 'Picture a scientist' by Sharon Shattuck & Ian Cheney (https://www.pictureascientist.com/)
Year(s) Of Engagement Activity 2022
 
Description Interview on BBC Radio 4 "Inside Science" 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Media (as a channel to the public)
Results and Impact Jaime Norman (PhD student) was interviewed by Adam Rutherford (BBC Radio 4 "Inside Science") about the Heavy-Ion run at the LHC and the ALICE experiment.
Year(s) Of Engagement Activity 2016
 
Description Invited talk: Gamma-ray imaging spectroscopy, CARM conference, NPL, London 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited talk at CARM conference (radiation metrology)
Year(s) Of Engagement Activity 2015
 
Description Lead Editor Special Issue NPNI for the Year of the Periodic Table 
Form Of Engagement Activity A magazine, newsletter or online publication
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Special Issue of Nuclear Physics News International to celebrate the UNESCO year of the Periodic Table
Year(s) Of Engagement Activity 2019
URL http://www.nupecc.org/?display=npn/issues
 
Description Liverpool-CERN summer school for A level students 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact Talk by Jaime Norman (PhD student) on the Standard Model.
Year(s) Of Engagement Activity 2015
 
Description Nuclear Physics Masterclasses 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Type Of Presentation Workshop Facilitator
Geographic Reach Regional
Primary Audience Schools
Results and Impact About 20 six-formers attend practical activities in the new Canberra Laboratory at the Univ. of Liverpool award-winning CTL facilities and presentations over a number of days, including discussions in the Q&A part of the presentations.
I was the academic lead scientist for these masterclasses since 2012.

Difficult to quantify.
Hopefully help attract students to study Physics at University and develop awareness of Nuclear Physics impact on everyday life.
Year(s) Of Engagement Activity 2012,2013,2014
 
Description PANS 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact PANS (Public Awareness of Nuclear Science) is an expert committee of NuPECC and the EPS for the promotion of Nuclear Science across Europe
Year(s) Of Engagement Activity 2018,2019
URL http://www.nupecc.org/pans/
 
Description School Visit (Holy Cross) 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact School Workshop "Meet a scientist" With several activities surrounding it.
Year(s) Of Engagement Activity 2019
 
Description Security relations research and application, USDNDO/UKFO meeting, Surrey 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Policymakers/politicians
Results and Impact US DNDO/UK HO policy meeting on security applications
Year(s) Of Engagement Activity 2015
 
Description University of Liverpool Physics Society 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Undergraduate students
Results and Impact Jaime Norman (PhD student) gave a presentation to Physics undergraduates about his research on heavy-flavour measurements with the ALICE experiment.
Year(s) Of Engagement Activity 2016
 
Description Visit of ALICE experiment at CERN/LHC by a delegation of British MPs (Marielle Chartier, February 2018) 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Policymakers/politicians
Results and Impact Official VIP visit by a delegation of a dozen British MPs to CERN, including the LHC and the ALICE experiment. Promoted the excellence of fundamental research performed at CERN and the positive impact it has on our society inlcuding techological advances, training opportunites of skilled staff, etc.
Year(s) Of Engagement Activity 2018
 
Description Women in Physics Workshop 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Type Of Presentation Keynote/Invited Speaker
Geographic Reach Regional
Primary Audience Schools
Results and Impact Invited Talk at Women in Physics (WiP) workshops, organised by the Physics Outreach Group of the University of Liverpool for girls in year 12 of high school, taking AS and/or A2 courses in Physics.

Difficult to quantify.
Hopefully help attract students to study Physics at University and develop awareness of Nuclear Physics impact on everyday life.
Year(s) Of Engagement Activity 2012,2013,2014