Liverpool Telescope Operations 2019-2020

Lead Research Organisation: Liverpool John Moores University
Department Name: Astrophysics Research Institute


The Liverpool Telescope (LT ) ( is the world's largest and most sophisticated (in terms of range of science programmes, flexibility of scheduling, and sophistication of instrumentation) robotic telescope with a dual role to carry out internationally competitive research and deliver the key observing resource to the National Schools Observatory. The NSO offers school children near-immediate access to a world-class observatory. Since its launch in 2004, this has led to over 100,000 observing requests from over 2,500 schools. The NSO currently works with over 4000 teachers throughout the UK and Ireland. At the core of the NSO is the website which provides support material for a range of subjects and receives well over 1 million hits each year.

Since operations began in 2004, LT has specialised in delivering high impact results in time domain astrophysics. Indeed, the observatory is unique in actively encouraging rapid-response and difficult-to-schedule monitoring projects from the U.K. and Spanish communities. Refereed publications that include LT data typically average 46 citations/paper, three time the average for all astronomy papers; to date 15 such papers have appeared in the high-profile journals Nature or Science, these having on average 86 citations/paper.

The telescope has high impact science programmes in five key areas of time domain astrophysics:

* Spectroscopy simultaneous with in-situ spacecraft measurements (e.g. ESA Rosetta and NASA New Horizons)
* Exoplanet Characterization
* Cataclysmic Variables, Novae and Supernovae
* Gravitational Wave and Gamma Ray Burst counterparts
* Active Galactic Nuclei

From the outset, the goal has been to provide a wide variety of instrumentation to cater for the broad interests of the LJMU and U.K./Spanish communities. Currently, optical photometry, spectroscopy and polarimetry and infrared photometry are offered with instruments and a software environment that are capable of sampling timescales from ~10 milliseconds to ~10 years. A continuous programme of instrument upgrades has been aggressively pursued throughout the last decade. This has kept the facility competitive and ensures its position at the forefront of time domain astronomy for at least the next five years.

This application is for an STFC contribution over the period 2019-2020 to the funding for the maintenance and operation of the Liverpool Telescope, and hence the continuation of its role as a major resource both for the LJMU Astrophysics Research Institute and the wider UK community.

Planned Impact

LT has a long tradition of strong industrial engagement. The initial build of the telescope was based around the establishment of a spinout company (TTL, Telescope Technologies Ltd) which was subsequently sold in 2005 to an ex-Google employee to build a global network of small (0.4 and 1 metre) robotic telescopes.

The project has ongoing strong links with a number of local engineering companies. Much of the precision engineering required for LT instrumentation is done in collaboration with the SME engineering firm "Senar". Through the Liverpool Telescope project Senar were contracted by the university-owned company TTL to build several parts for the telescope, resulting in the company upgrading its skills and machinery to deliver the high precision needed for astronomical instrumentation. The contract safeguarded a number of jobs at the time and the company received a grant from MAS (Manufacturing Institute, via the local council organization Wirral Direct) for the purchase of a new, more accurate, CNC lathe for precision machining. Their ongoing work for LT also features as part of their advertising, using the telescope as an example of a high-profile/high-technology client. Their reputation in precision engineering for astronomical applications over the past 10 years has led to contracts with other international observatories (e.g., the new WHT Auxiliary camera and a WEAVE contract) and with CERN, producing the chain links that carry cooling pipes and electrical cables for the LHC. This activity contributed to the rating of ARI impact in the 2nd quartile in REF2014.

Skills and knowledge transfer are furthered by the direct involvement of students (undergraduate and postgraduate) in development projects. The LT team has consistently included undergraduate, postgraduate and PhD students in instrument and software design and development with these projects forming the basis of several PhD theses. Most of these students have left academic research for wider industry.

LT has also had success in licensing software and hardware developed for the telescope to the Faulkes/LCOGT organization. License income of £160k plus telescope time worth an additional £180k on the LCO telescopes has been received by LJMU from this activity.

LT is a focus for a significant fraction of the extensive Public Engagement programme at ARI. As well as many talks and workshops to schools and the general public (e.g. in 2012/13 over 150 talks to over 10,000 people were given based on the LT) the LT is also key to the success of a suite of Distance Learning courses in Astronomy that attract around 200 students a year, many of whom have little or no prior experience of Higher Education.

The LT is also an important element in the Spaceport visitor attraction on the banks of the river Mersey. The attraction regularly exceeds visitor number predictions (currently at around 70,000 per year) and brings considerable income into a regeneration area. Using the standard STEAM model (Digest of Tourism Statistics, Dec. 2009 - The Mersey Partnership) for determining the economic benefits of tourism in the City Region for day visitors, this equates to a net gain of more than £2m per year. Spaceport also contributed towards the success of Mersey Ferries being ranked 1st in the City Region in 2008 - when Liverpool was European Capital of Culture - for a paid tourist attraction and an independent MORI Poll from 2006 found that 97% of visitors to Spaceport were either satisfied or very satisfied with their visit. Due to this success, the original targets for the regeneration have been met or exceeded. These include the creation of an estimated 50 new jobs, both direct and indirect, which equates to a gross value added of £1.4m pa to the City Region.

LT is the key resource of the National Schools Observatory, which has delivered over 100,000 unique observations to over 2,500 UK and Irish schools and over 1,000,000 website hits/year.


10 25 50
publication icon
Hooton M (2019) Storms or systematics? The changing secondary eclipse depth of WASP-12b in Monthly Notices of the Royal Astronomical Society

publication icon
Todorov K (2019) Ground-based optical transmission spectrum of the hot Jupiter HAT-P-1b in Astronomy & Astrophysics

publication icon
Ridden-Harper A (2019) Search for gas from the disintegrating rocky exoplanet K2-22b in Astronomy & Astrophysics

publication icon
Berghaus K (2019) Decays of long-lived relics and their signatures at IceCube in Journal of High Energy Physics

publication icon
Zheng W (2019) AT 2017fvz: a nova in the dwarf irregular galaxy NGC 6822 in Monthly Notices of the Royal Astronomical Society