AWAKE-Run 2

Lead Research Organisation: University of Manchester
Department Name: Engineering and Physical Sciences

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

Planned Impact

This project is naturally a multi-disciplinary pursuit involving accelerator, plasma and particle physicists as well as engineers and technical staff. If AWAKE continues its success, this method of acceleration could provide a new cost-effective route to TeV-scale colliders either of reduced length or increased energy as well as particle physics experiments requiring electrons beams of 10s of GeV. Several possible experiments have been identified which could make use of electron bunches with electrons of order 50 GeV, such as a fixed-target experiment to search for dark photons, measurements of strong-field QED through electron-laser collisions and a possible electron-proton collider.

This UK proposal is for a significant development and is wide-ranging in scope, with some equipment to be purchased from UK-based companies which could increase significantly in the future should this form of technology become a real-world solution. As we in the UK are a significant fraction of the AWAKE collaboration from the start, should the final goal be realized, there is potential for economic stimulus to the UK which building a large-scale research facility brings. This will involve the potential for large industrial contracts, training for students and other staff and knowledge exchange between academic institutes and industry arising from the R&D and the method of plasma wakefield acceleration.

The final aim of this project is to develop an accelerator technology to be used for investigation of fundamental particles and forces, however, the principle of plasma wakefield acceleration could revolutionise accelerators in general. The accelerating gradients achieved are up to three orders of magnitude higher than current techniques allowing a corresponding reduction in the size (and possibly cost) of future accelerators. This could then benefit any branch of science, health or industry which uses particle accelerators. An example is for future free electron laser facilities which could benefit significantly from this technique in which the acceleration of electrons takes place using a much shorter accelerating structure.

Diagnostic techniques developed here could be of benefit to many plasma wakefield experiments with different goals or applications. Therefore the work done here could benefit accelerators planned for other industries using the technique of plasma wakefield acceleration.

Finally, the physics behind the accelerator R&D and the final goal of the next energy-frontier collider will excite future students and captivate the public in much the same way as the Large Hadron Collider has. Having the UK as part of such cutting-edge R&D in order to be leaders of future experiments on the nature of the physical world is essential and beneficial for society. Any economic impact, as mentioned above, can only be achieved through being a strong partner. And the societal benefit of encouraging students to study physics and improving the general public's knowledge of science can best be achieved if we are part of these and future pursuits.

Publications

10 25 50
 
Description Collaboration with University College London, University of Liverpool, Royal Holloway University of London 
Organisation Lancaster University
Country United Kingdom 
Sector Academic/University 
PI Contribution We contributed to the simulation study of proton beam-plasma interactions, short electron bunch diagnostic using coherent Cherenkov Diffraction radiation (collaboration with RHUL, UCL, Liverpool University and CERN), accelerated electron beam emittance measurement using betatron spectroscopy. In addition we are working on the high energy collider based on plasma accelerators and other key issues in plasma based accelerators.
Collaborator Contribution Our partner universities gave contributions to the AWAKE project on the energy spectrometer, booster linac, electron and proton beam diagnostics.
Impact We applied the AWAKE grant together and gave key contributions to the experiment
Start Year 2014
 
Description Collaboration with University College London, University of Liverpool, Royal Holloway University of London 
Organisation University College London
Department Department of Ophthamology
Country United Kingdom 
Sector Hospitals 
PI Contribution We contributed to the simulation study of proton beam-plasma interactions, short electron bunch diagnostic using coherent Cherenkov Diffraction radiation (collaboration with RHUL, UCL, Liverpool University and CERN), accelerated electron beam emittance measurement using betatron spectroscopy. In addition we are working on the high energy collider based on plasma accelerators and other key issues in plasma based accelerators.
Collaborator Contribution Our partner universities gave contributions to the AWAKE project on the energy spectrometer, booster linac, electron and proton beam diagnostics.
Impact We applied the AWAKE grant together and gave key contributions to the experiment
Start Year 2014
 
Description Outreach talk given at Withington Girls' School (WGS) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact I was invited to give a PhilSoc Lecture (on the frontiers of particle accelerators including AWAKE) at Withington Girls' School on 11th February 2022, the lecture has attracted some 50+ 6th form, year 12-13 students and local people. The aim of this lecture is to inspire girls to take STEM as their future careers.
Year(s) Of Engagement Activity 2022