The John Adams Institute for Accelerator Science
Lead Research Organisation:
Royal Holloway, Univ of London
Department Name: Physics
Abstract
The John Adams Institute for Accelerator Science (JAI) is a centre of excellence for advanced accelerator science and technology. We perform R&D and training, provide expertise, and promote accelerator applications in science and society. The JAI currently comprises 20 faculty, 23 staff, and 38 PhD students from the Physics Departments of Oxford University (UOXF), Royal Holloway University of London (RHUL), and Imperial College London (ICL). An additional 33 staff from the UK's national laboratories and CERN are affiliated with our research and teaching programmes. We have six guiding principles:
a) Develop, support and engagement of accelerator science facilities and R&D programmes of strategic importance for the UK;
b) Develop worldwide collaborations that enhance the capabilities available to us;
c) Develop novel acceleration and compact light source techniques and their applications;
d) Deliver a world leading training programme to develop the next generation of leaders in the field;
e) Communicate developments in the field to the public and decision makers;
f) Strengthen the links among the partner universities to deliver a programme that is greater than the sum of its parts.
For the period 2021-2025, we have focused on research areas that have the greatest benefit to national priorities:
* Low-emittance, high-brightness electron beams, including next-generation electron-positron colliders (ILC, CLIC), the Diamond Light Source (DLS) and its upgrade, and a future UK FEL.
* High-energy/high-intensity hadron beams, including current and future energy-frontier proton colliders (LHC, HL-LHC, FCC), and ISIS and its upgrade.
* Advanced acceleration techniques, including laser- and beam-driven plasma-wakefield acceleration.
* Particle-beam therapy applications using electron, proton and ion beams.
Through this programme we are supporting the UK's accelerator strategy by taking lead roles in both our national and overseas facilities including: DLS, ISIS and CLF at STFC/RAL, CLARA at STFC/DL, LHC, HL-LHC, CLIC, FCC and AWAKE at CERN, FLASHforward at DESY, and ATF/ATF2 at KEK.
These themes position us optimally to support our core goals of supporting major national and international accelerator developments; motivating our researchers and giving them skills in state-of-the-art technologies; and being able to transfer our knowledge to major collaborative developments and to industry.
a) Develop, support and engagement of accelerator science facilities and R&D programmes of strategic importance for the UK;
b) Develop worldwide collaborations that enhance the capabilities available to us;
c) Develop novel acceleration and compact light source techniques and their applications;
d) Deliver a world leading training programme to develop the next generation of leaders in the field;
e) Communicate developments in the field to the public and decision makers;
f) Strengthen the links among the partner universities to deliver a programme that is greater than the sum of its parts.
For the period 2021-2025, we have focused on research areas that have the greatest benefit to national priorities:
* Low-emittance, high-brightness electron beams, including next-generation electron-positron colliders (ILC, CLIC), the Diamond Light Source (DLS) and its upgrade, and a future UK FEL.
* High-energy/high-intensity hadron beams, including current and future energy-frontier proton colliders (LHC, HL-LHC, FCC), and ISIS and its upgrade.
* Advanced acceleration techniques, including laser- and beam-driven plasma-wakefield acceleration.
* Particle-beam therapy applications using electron, proton and ion beams.
Through this programme we are supporting the UK's accelerator strategy by taking lead roles in both our national and overseas facilities including: DLS, ISIS and CLF at STFC/RAL, CLARA at STFC/DL, LHC, HL-LHC, CLIC, FCC and AWAKE at CERN, FLASHforward at DESY, and ATF/ATF2 at KEK.
These themes position us optimally to support our core goals of supporting major national and international accelerator developments; motivating our researchers and giving them skills in state-of-the-art technologies; and being able to transfer our knowledge to major collaborative developments and to industry.
Publications

Abramowicz H
(2021)
Conceptual design report for the LUXE experiment
in The European Physical Journal Special Topics

Abreu H
(2021)
First neutrino interaction candidates at the LHC
in Physical Review D

Abreu H
(2024)
Search for dark photons with the FASER detector at the LHC
in Physics Letters B

Abreu H
(2023)
First Direct Observation of Collider Neutrinos with FASER at the LHC.
in Physical review letters

Abreu H
(2022)
The tracking detector of the FASER experiment
in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment


Ali M
(2024)
Identification of material by X-ray fluorescence analysis with a pyroelectric X-ray generator
in Journal of Instrumentation

Ali M
(2024)
Stability of electrons and X-rays generated in a pyroelectric accelerator
in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Aloyan L
(2024)
Enhanced DNA damage induced by ultrashort electron beams in the presence of a Cu-containing porphyrin
in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment