Astrophysics Research at Liverpool John Moores University: Newly Appointed Academic Staff

Lead Research Organisation: Liverpool John Moores University
Department Name: Astrophysics Research Institute

Abstract

This grant will allow six new academic staff, recently employed in the Astrophysics Research Institute, to carry out their World-leading research as they settle into their new academic environment in Liverpool. The areas of interest of these new staff broadly align with the existing scientific strengths of the ARI, namely: the origin of stars; the chemical composition of galaxies; observational and theoretical studies of the Milky Way; large cosmological hydrodynamical simulations of galaxy clusters; theoretical studies to determine the physical properties of supernovae.

Under the heading of the origin of stars, we will investigate how the initial masses of stars forming in the Galaxy change with environment. Observations of the gas in giant star-forming regions will be used to determine key physical properties on scales close to the size of individual stars.

We will carry out a major spectroscopic survey of nearly 1 million stars in the disc and bulge of the Milky Way. This major legacy survey (APOGEE) and its successor (APOGEE-2), partly supported by the Sloan Foundation, will have major impact on questions such as: the chemical composition of the disc and bulge regions of the galaxy; the origin of globular clusters and whether there is evidence for the very first generation (population III) stars. We will also carry out cosmological hydrodynamic simulations of the Milky Way on supercomputers to provide well-matched and high resolution predictions of the merger history of the galaxy to compare with the observations from the forthcoming Gaia satellite mission, which will provide a 3D map of the Milky Way.

Our extragalactic chemical composition work focuses on a new technique, using Red Supergiant Stars, to measure the element abundances in nearby galaxies. By examining physical relationships, such as the correlation between a galaxy's central mass and metallicity, or the abundance gradients within galaxies, we will make important insights into the processes of galaxy formation and evolution.

On the largest scales we will carry out cosmological simulations of galaxy clusters, including all known feedback mechanisms, in order to provide representative samples of mock clusters. Simulation results will be incorporated into real observations from on-going cluster surveys at different wavelengths (including the XMM-Cluster Survey, in which the ARI is heavily involved) in order to make unbiased estimates of the cosmological parameters and physical conditions in the clusters.

We will investigate the outburst properties of supernovae using data from large on-going transient surveys and explore the relationship between the properties of the SN and its progenitor, as well as searching for new types of transients. In particular we will examine a large population of type SN Ia supernovae and study "extreme" events which violate normal behaviour in order to improve their use as cosmological distance indicators.

All of our research uses the most advanced ground-based telescopes, satellites and data analysis techniques to carry out observations, including telescope time on newly commissioned facilities such as ALMA and the KMOS multi-object spectrograph on the VLT, along with space missions such as Gaia. The new staff lead programmes at the international level, which are also technically demanding and feed into the design and operation of the next generation of telescopes and their instruments, such as the E-ELT (EAGLE/EVE), Liverpool Telescope and WHT (WEAVE).

Planned Impact

The major form of impact arising from additional funds to our current Consolidated Grant, will come from existing activities described in more detail in the Pathways to Impact document. These will benefit schools, amateur astronomers and the general public.

At a University level, the Research Support Office have recently launched the LJMU Research Café - a series of informal, cross-cutting research seminars which will be held monthly in one of the University's Learning Resource Centres. At each event four researchers will present their research to a mixed audience from across the University in a series of short presentations. Sessions will not be themed as the intention is to support a varied programme enabling the audience to engage with the rich variety of research which takes place across the University and for presenters to disseminate their research to a broader audience.

In addition, through activities initiated within the ARI, there will be other more traditional forms of public engagement growing from our research. In particular we would anticipate a number of talks, panel discussions and question-and-answer sessions relating to our research. These will vary with respect to audience: schools (from primary upwards), amateur astronomy societies, lecture societies, WI etc. We will also showcase the new research at events organised by the ARI (such as the annual Merseyside Astronomy Day) and, where appropriate, at the Spaceport visitor centre.

In all cases the benefits will be twofold. Obviously, an exposure to current research can stimulate inquiry and interest in any audience. However, a less obvious, but perhaps more important benefit is to use that stimulation to promote an appreciation of science as a whole. This is particularly important for engagement with schools where astronomy has a vital role to play in promoting science and other STEM subjects as potential careers.

In order to facilitate this, younger and less experienced researchers (especially PDRAs and PhD students) are encouraged to present their research to a variety of audiences, with training and support provided by the experienced Outreach team within the ARI.

We will also work with non-science organisations to find ways in which the research can be used to enhance their own work. This sort of impact is difficult to predict in advance, as it is usually opportunistic, but past examples in the ARI have involved work with arts organisations and artists (including musicians, theatre companies, street theatre performers, sculptors, photographers and writers) and organisations that promote access to education (such as Aim Higher).

Publications

10 25 50

publication icon
Jerkstrand A (2015) Supersolar Ni/Fe production in the Type IIP SN 2012ec in Monthly Notices of the Royal Astronomical Society

publication icon
Sasdelli M (2015) A metric space for Type Ia supernova spectra in Monthly Notices of the Royal Astronomical Society

publication icon
Urquhart J (2015) The RMS survey: ammonia mapping of the environment of massive young stellar objects in Monthly Notices of the Royal Astronomical Society

publication icon
Schaller M (2015) Baryon effects on the internal structure of ?CDM haloes in the EAGLE simulations in Monthly Notices of the Royal Astronomical Society

publication icon
Nicholl M (2015) On the diversity of superluminous supernovae: ejected mass as the dominant factor in Monthly Notices of the Royal Astronomical Society

 
Description Discoveries about evolution of stars, galaxies and clusters of galaxies, dark matter and dark energy.
Total publication output due to new staff and associated new collaborations rose from 100 p.a. to 200 p.a. - doubling our research productivity. Over the same period research income grew from £5m to over £11m.
Exploitation Route Further research into unsolved problems in astrophysics.
This award led to successful integration of newly appointed staff into the Consolidated submissions in 2015 and 2018.

One newly appointed staff Co-I (Steve Longmore) started the Astro-ecology group at ARI. The ARI's AE project combining infrared astronomical instrumentation expertise with drone technology is impacting the way conservation agencies around the world (e.g. WWF) conduct animal surveys. The thermal-drone enables safe, routine, efficient and cost-effective monitoring and management of animal populations over large and inhospitable areas, with a factor of up to 200x increase in survey efficiency over existing methods. This provides conservation agencies greatly improved data needed to quantify and mitigate biodiversity loss. The thermal drone system is being used routinely to help local fire-fighting teams to find/extinguish annual peat fires in Indonesia which are a major contributor to anthropogenic CO2 emissions. The orders of magnitude improvement in fire extinction efficiency the system offers over existing methods will hopefully lead to substantial reduction in CO2 emissions -- a leading cause of climate change. the amount of income generated for this project has now (Feb 2020) exceeded £1.5m.
Sectors Communities and Social Services/Policy,Education,Environment,Security and Diplomacy

URL http://www.astro.ljmu.ac.uk
 
Description Many outreach activities across all sectors, e.g. Schools, public, policy makers, flower shows. Across discipline funding for astro-ecology using 10 micron cameras on drones flown over conservation areas (Nepal, Africa, Australia) to help preservation of endangered species. Findings are disseminated in astronomical literature and through public events and schools through the National Schools' Observatory. Partly as a result of this grant NSO now has 3,000 registered schools and delivered 140,000 observations to classrooms. We carry out a range of outreach activities visiting schools, astronomical societies and social groups. We also carry out special exhibitions and events at national venues including Tate Liverpool; FACT; the Science Museum London; the London Design Biennale at Somerset House. These have showcased ARI and LJMU research to a total estimated audience in excess of 50,000. Two of our Outreach staff have fEC awards to carry out impact for two funded projects on our renewed Consolidated Grant 2018-21. Under the directorship of Professor Steve Longmore, ARI has developed a major new research area connected to environmental impact, "Astro-ecology". Longmore and team are working with conservation agencies worldwide (e.g. WWF; Endangered Wildlife Trust; Wetland Wildlife trust; National Geographic; Borneo Nature Foundation; Indonesia National Parks; Chester Zoo; Knowsley Safari Park; Morecambe Bay Search and Rescue; several universities), flying infrared instrumentation developed for astronomical purposes on drones. Applications include: animal conservation in rain forests; peat fire detection in Indonesia and human rescue at sea. Starting with an internal LJMU startup award of £25k in 2016, this work has attracted more than £1.5m of external funding (as of Feb 2020) principally through STFC/GCRF grant awards.
First Year Of Impact 2015
Sector Agriculture, Food and Drink,Education,Environment,Culture, Heritage, Museums and Collections,Security and Diplomacy,Other
Impact Types Cultural,Societal,Economic,Policy & public services

 
Description Astro-ecology with drones (2015-2020)
Geographic Reach Multiple continents/international 
Policy Influence Type Influenced training of practitioners or researchers
Impact The ARI's project combining infrared astronomical instrumentation expertise with drone technology is impacting the way conservation agencies around the world (e.g. WWF) conduct animal surveys. The thermal-drone enables safe, routine, efficient and cost-effective monitoring and management of animal populations over large and inhospitable areas, with a factor of up to 200x increase in survey efficiency over existing methods. This provides conservation agencies greatly improved data needed to quantify and mitigate biodiversity loss. The thermal drone system is being used routinely to help local fire-fighting teams to find/extinguish annual peat fires in Indonesia which are a major contributor to anthropogenic CO2 emissions. The orders of magnitude improvement in fire extinction efficiency the system offers over existing methods will hopefully lead to substantial reduction in CO2 emissions -- a leading cause of climate change.
URL http://www.astro.ljmu.ac.uk
 
Description NSO Presentation in House of Commons
Geographic Reach National 
Policy Influence Type Influenced training of practitioners or researchers
 
Description Astro-ecology: the solution from the skies to save Earth's biodiversity
Amount £411,988 (GBP)
Funding ID ST/R002673/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 01/2018 
End 12/2019
 
Description CO2 emission from peat fires in Indonesia
Amount £450,000 (GBP)
Funding ID ST/S00288X/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 04/2019 
End 03/2022
 
Description Consolidated Renewal
Amount £1,200,000 (GBP)
Funding ID ST/R000484/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 04/2018 
End 03/2021
 
Description ERC Consolidator Award
Amount £1,500,000 (GBP)
Organisation EU-T0 
Sector Public
Country European Union (EU)
Start 06/2018 
End 05/2023
 
Description STFC Consolidated Grant Renewal
Amount £1,200,000 (GBP)
Funding ID ST/M000966/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 04/2015 
End 03/2018
 
Description The next generation of holistic galaxy formation simulations at LJMU
Amount £37,942 (GBP)
Funding ID RGF/EA/180162 
Organisation Liverpool John Moores University 
Sector Academic/University
Country United Kingdom
Start 11/2017 
End 10/2020
 
Description Astro-ecology 
Organisation World Wide Fund for Nature
Country Switzerland 
Sector Charity/Non Profit 
PI Contribution Various conservation agencies, e.g. WWF worldwide.
Collaborator Contribution Development of drone technology and IR data reduction techniques for various applications: rare animal species (rhino, lemur, orangutang etc..), peat fires in Indonesia; RNLI search and rescue
Impact Listed in publications
Start Year 2016
 
Description International Research Collaboration 2015-2021 
Organisation California Institute of Technology
Country United States 
Sector Academic/University 
PI Contribution The New Applicants Award and subsequent consolidated grants in 2015 and 2018 led to many international collaborations, for example: Harvard - Star Formation and PhD Exchange Programme. Caltech - supernovae and (iPTF/ZTF) transient surveys Virgo consortium membership in Cosmological Simulations - High Performance Computing SLOAN Digitised Survey - IV: UK Participation membership. Virgo-Ligo GW electromagnetic followup MPE, MPA Munch, Penn State, University of Tokyo, IAC Tenerife, and partners in the UK.
Collaborator Contribution Partners contribute through refereed papers (ARI publishes 200 p.a.)
Impact More than 200 refereed papers p.a. and £12m of external grant income.
Start Year 2015
 
Description ARI Engagement 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact The ARI Outreach team delivers 50 events per year in addition to School based activities. These include, astronomy and science societies and associations, public open events, theatre, street theatre etc..art exhibitions, church societies, cubs, scouts, brownies etc..
Year(s) Of Engagement Activity 2009,2010,2011,2012,2013,2014,2015,2016
 
Description Exhibitions at national venues 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact Special exhibitions and events at national venues including: Tate Liverpool, Foundation for Art and Creative Technology (FACT), the Science Museum, the London Design Biennale at Somerset House.
Year(s) Of Engagement Activity 2016,2017,2018,2019
URL http://www.astro.ljmu.ac.uk/
 
Description NSO-Garden Chelsea 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact In 2015 the NSO exhibited a garden called Dark Matter; at the Chelsea Flower Show winning a Gold medal and Best in Class" (Fresh Gardens). The aggregate audience was estimated at 211 million. The garden has an extensive legacy value at the STFC Daresbury Laboratory and is highlighted on the front cover of the 2015 STFC Impact Report.
Year(s) Of Engagement Activity 2015
URL http://www.stfc.ac.uk/files/impact-report-2015/
 
Description National Schools Observatory 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Schools
Results and Impact Enhanced interest and uptake of STEM subjects

Each year the NSO delivers just over 40 different events or visits to or involving schools. This reaches a total of about 4,500 pupils per year in about 80 different schools.

Increasing schools registration on NSO - more than 4000 currently
Year(s) Of Engagement Activity Pre-2006,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016
URL http://www.schoolsobservatory.org.uk/
 
Description National Schools' Observatory 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact Local Schools,
Exhibitions (Tate Liverpool, Chelsea Flower Show (audience 200 million) ; FACT; London Design Biennale
Year(s) Of Engagement Activity 2014,2015,2016,2017,2018,2019,2020
URL http://www.astro.ljmu.ac.uk/
 
Description National Schools' Observatory 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Schools
Results and Impact The NSO has 3,000 registered schools. More than 100,000 discrete observations with the LT have been returned to schools for projects within the classroom.
Full evaluation of the impact of the NSO is currently underway.

Two of the NSO staff team now have FeC on our renewed Consolidated Grant (2018-2021)
Year(s) Of Engagement Activity 2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019
URL http://www.astro.ljmu.ac.uk/