Nuclear Physics Consolidated Grant 2013 (Equipment Bid)

Lead Research Organisation: University of Liverpool
Department Name: Physics

Abstract

The majority of the visible mass of the universe is made up of atomic nuclei that lie at the centre of atoms. Nuclear physics seeks to answer fundamental questions such as: "How do the laws of physics work when driven to the extremes? What are the fundamental constituents and fabric of the universe and how do they interact? How did the universe begin and how is it evolving? What is the nature of nuclear and hadronic matter?" The aim of our research is to study the properties of atomic nuclei and nuclear matter in order to answer these questions. No one yet knows how heavy a nucleus can be; in other words, just how many neutrons and protons can be made to bind together. We will study the heaviest nuclei that can be made in the laboratory and determine their properties which will allow better predictions to be made for the "superheavies". For lighter nuclei we will explore in the region of the proton and neutron drip lines, which are the borders between bound and unbound nuclei. We will determine more precisely than ever before the location of these drip lines. Nuclei beyond the proton drip line have so much electrical charge that they are highly unstable and try to achieve greater stability through the process of proton emission. We will investigate how nuclear behaviour is affected when protons become unbound.

For these exotic systems we will also explore how the nucleus prefers to rearrange its shape, which can be a sphere, rugby ball, pear, etc. and how it stores its energy among the possible degrees of freedom. We will also investigate how the properties of these nuclei develop as we make them spin faster and faster. We will try to determine the precise nature of ultra high spin states in heavy nuclei, just before the nucleus breaks up due to fission. By violently removing a nucleon from a nucleus in a nuclear reaction at high energies and measuring its properties, we can investigate to what extent the nucleon "feels" the influence of its neighbouring nucleons, whether it is correlated with them. Such information tells us about the nuclear force inside the nucleus at different inter-nucleon distances. Nuclear matter can exist in different phases, analogous to the solid, liquid, gas and plasma phases in ordinary substances. By varying the temperature, density, pressure and isospin asymmetry (the relative number of neutrons and protons), nuclear matter can undergo a transition from one phase to another. Thermodynamic properties nuclear matter and its phase transitions can be described by its equation of state. In extreme conditions of density and temperature (about 100 thousands times more than the temperature at the heart of the sun!), a phase transition should occur and quarks and gluons (of which the protons and neutrons are made of) should exist in a new state of matter called the Quark-Gluon Plasma. By colliding nuclei together at high energies, we will study properties of this new state of matter and how nuclear matter behaves as the isospin asymmetry and density vary. Such information is not only important for nuclear physics but also to understand neutron stars and other compact astrophysical objects.

This programme of research will employ a large variety of experimental methods to probe many aspects of nuclear structure and the phases of strongly interacting matter, mostly using instrumentation that we have constructed at several world-leading accelerator laboratories. The work will require a series of related experiments at a range of facilities in order for us to gain an insight into the answers to the questions posed above. These experiments will help theorists to refine and test their calculations that have attempted to predict the properties of nuclei and nuclear matter, often with widely differing results. The resolution of this problem will help us to describe complex many-body nuclear systems and better understand conditions in our universe a few fractions of a second after the big bang.

Planned Impact

Nuclear physics research and technology development has had a huge beneficial influence in our Society's everyday lives. Through energy production with low-carbon emission, radiation detection for national security or environmental monitoring, and cancer diagnosis and treatment in modern healthcare, the applications emerging from nuclear physics are numerous.

Recent high profile scientific discoveries include:
- The confirmation of the existence of the super heavy chemical element 115. In collaboration with Lund University, researchers from the University were able to present a way to directly identify new super heavy elements.
- The ISOLDE facility at CERN was used to successfully study the shape of the short-lived isotopes 220Rn and 224Ra, showing that the latter is pear-shaped. The results of the Liverpool-led measurements, that also have implications for atomic EDM measurements, received a large amount of interest from the media world-wide.
- The group used their expertise to build a detector system for the ALPHA antihydrogen experiment at CERN. The recent results from this experiment, where antimatter was trapped for more than 1000s, the first quantum transition was excited with microwaves, and measurements on antigravity reported, resulted in large scale media exposure.
- The work at ultra high spin in nuclei has been cited as one of the Science highlights of 2013 and in the major 2012 decadal report "Nuclear Physics: Exploring the Heart of Matter"

Liverpool has a number of established industrial links which benefit from its expertise in nuclear radiation measurements, modelling and instrumentation. These include GE Healthcare, BAE Systems, AWE, Canberra, Centronic, Kromek, Canberra Harwell, Ametek, John Caunt Scientific, National Nuclear Laboratory and Rapiscan. These links include the joint projects ProSPECTus, PorGamRays, PGRIS and GammakeV. The University has secured a prestigious four year STFC IPS Fellowship to maximise the impact of the STFC funded science portfolio. The role will deliver increased numbers of industrial studentships, enable "pump priming" of collaborative ideas and will facilitate potential staff exchanges with industrial collaborators.

The University Department of Physics is one of only three national training providers for the new Modernising Scientific Careers Clinical Science (Medical Physics) MSc, funded by the NHS. This MSc is delivered by the Nuclear Physics Group in collaboration with the Royal Liverpool University Hospital NHS Trust, the Clatterbridge Cancer Centre and the Merseyside NHS Training Consortium for Medical Physics & Clinical Engineering. This provides a unique opportunity to build collaborative research and Continuing Professional Development partnerships within the Healthcare sector.

The University of Liverpool hosts many events for schools aimed at promoting Physics. For Nuclear Physics in particular a series of masterclasses is run for schools aimed at year 12 pupils that are run twice per year and cater for about 60 students. These benefit from the nuclear physics expertise in the group and its excellent laboratory facilities where nuclear measurements can be made. Members of the group provide teacher training and go to schools to deliver lectures and demonstrations on both nuclear physics research and its applications. With the recent opening of the Central Teaching Laboratory (CTL) facility at the University, these activities will continue and expand during the grant period. The CTL has a dedicated laboratory for Nuclear Physics and radiation measurements and schools and outreach activities will be held on a regular basis with University support. Overall in 2012/13 more than 2000 school students attended outreach events at the CTL, each event having a strong nuclear component.

Publications

10 25 50

publication icon
Butler P (2014) Pear-shaped Nuclei: Nuclear Models and the Standard Model in Acta Physica Polonica B

publication icon
Briselet R (2019) Production cross section and decay study of Es 243 and Md 249 in Physical Review C

publication icon
ALICE Collaboration (2015) Production of [Formula: see text] and [Formula: see text] in proton-proton collisions at [Formula: see text] 7 TeV. in The European physical journal. C, Particles and fields

publication icon
Page R (2016) Proton emission - new results and future prospects in EPJ Web of Conferences

publication icon
Herzberg R (2019) Public Awareness of Nuclear Science (PANS) in Nuclear Physics News

publication icon
Cheal B (2015) Recent Advances in On-Line Laser Spectroscopy in Nuclear Physics News

publication icon
Li H (2015) Recoil-decay tagging spectroscopy of 74 162 W 88 in Physical Review C

publication icon
Rudolph D (2014) Selected spectroscopic results on element 115 decay chains in Journal of Radioanalytical and Nuclear Chemistry

publication icon
Yordanov DT (2016) Simple Nuclear Structure in (111-129)Cd from Atomic Isomer Shifts. in Physical review letters

publication icon
Cox D (2015) Simulation of the SAGE spectrometer in The European Physical Journal A

publication icon
Mason P (2014) Spectroscopy of Hf 161 from low to high spin in Physical Review C

publication icon
Butler P (2015) Studies of the Shapes of Heavy Nuclei at ISOLDE in Journal of Physics: Conference Series

publication icon
Di Nitto A (2018) Study of non-fusion products in the Ti 50 + Cf 249 reaction in Physics Letters B

publication icon
Yakushev A (2014) Superheavy element flerovium (element 114) is a volatile metal. in Inorganic chemistry

publication icon
Pakarinen J (2014) The SAGE spectrometer in The European Physical Journal A

publication icon
Papadakis P (2018) The SPEDE spectrometer in The European Physical Journal A

publication icon
Giles M (2019) TPEN: A Triple-foil differential Plunger for lifetime measurements of excited states in Exotic Nuclei in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

publication icon
Butler P (2016) TSR: A storage and cooling ring for HIE-ISOLDE in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

publication icon
Butler P (2016) TSR: A Storage Ring for HIE-ISOLDE in Acta Physica Polonica B

publication icon
Bree N (2015) X-ray production with heavy post-accelerated radioactive-ion beams in the lead region of interest for Coulomb-excitation measurements in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

 
Description The majority of the visible mass of the universe is made up of atomic nuclei that lie at the centre of atoms. Nuclear physics seeks to answer fundamental questions such as: "How do the laws of physics work when driven to the extremes? What are the fundamental constituents and fabric of the universe and how do they interact? How did the universe begin and how is it evolving? What is the nature of nuclear and hadronic matter?" The aim of our research is to study the properties of atomic nuclei and to measure the properties of hot nuclear matter in order to answer these questions. No one yet knows how heavy a nucleus can be; in other words, just how many neutrons and protons can be made to bind together. We study the heaviest nuclei that can be made in the laboratory and determine their properties which will allow better predictions to be made for the "superheavies". For lighter nuclei wel explore in the region of the proton and neutron drip lines, which are the borders between bound and unbound nuclei. We will determine more precisely than ever before the location of these drip lines. Nuclei beyond the proton drip line have so much electrical charge that they are highly unstable and try to achieve greater stability through the process of proton emission. We investigate how nuclear behaviour is affected when protons become unbound. For these exotic systems we will also explore how the nucleus prefers to rearrange its shape, which can be a sphere, rugby ball, pear, etc. and how it stores its energy among the possible degrees of freedom. We will also investigate how the properties of these nuclei develop as we make them spin faster and faster. Wel try to determine the precise nature of ultra high spin states in heavy nuclei, just before the nucleus breaks up due to fission. By violently removing a nucleon from a nucleus in a nuclear reaction at high energies and measuring its properties, we can investigate to what extent the nucleon "feels" the influence of its neighbouring nucleons, whether it is correlated with them. Such information tells us about the nuclear force inside the nucleus at different inter-nucleon distances. Nuclear matter can exist in different phases, analogous to the solid, liquid, gas and plasma phases in ordinary substances. By varying the temperature, density or pressure, nuclear matter can undergo a transition from one phase to another. In extreme conditions of density and temperature (about 100 thousands times more than the temperature at the heart of the sun!), a phase transition should occur and quarks and gluons (of which the protons and neutrons are made of) should exist in a new state of matter called the Quark-Gluon Plasma. By colliding nuclei together at high energies at the Large Hadron Collider at CERN, we will study properties of this new state of matter. Such information is not only important for nuclear physics but also to understand neutron stars and other compact astrophysical objects. This programme of research employs a large variety of experimental methods to probe many aspects of nuclear structure and the phases of strongly interacting matter, mostly using instrumentation that we have constructed at several world-leading accelerator laboratories. The work requires a series of related experiments at a range of facilities in order for us to gain an insight into the answers to the questions posed above. These experiments help theorists to refine and test their calculations that have attempted to predict the properties of nuclei and nuclear matter, often with widely differing results. The resolution of this problem will help us to describe complex many-body nuclear systems and better understand conditions in our universe a few fractions of a second after the big bang.
Exploitation Route See publication list Nuclear Physics Consolidated Grant
Sectors Digital/Communication/Information Technologies (including Software),Education,Electronics,Environment,Healthcare,Security and Diplomacy

 
Description Please refer to the Nuclear Physics Consolidated Grant 2013. This equipment bid is not an independent grant, and all outcomes associated with the main grant are equally applicable here.
First Year Of Impact 2014
Sector Electronics,Energy,Environment,Healthcare,Security and Diplomacy
Impact Types Cultural,Societal,Economic

 
Description Nuclear Physics Consolidated Grant
Amount £2,492,291 (GBP)
Funding ID ST/P004598/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 10/2017 
End 09/2021
 
Description JYFL Laser Spectroscopy 
Organisation University of Jyvaskyla
Country Finland 
Sector Academic/University 
PI Contribution Running of the laser spectroscopy set-up, contribution to equipment/consumable funding, spokesperson of several experiments.
Collaborator Contribution Provision of laboratory space, equipment and accelerator use.
Impact Active experimental proposals have been awarded accelerator beam time by the local Programme Advisory Committee. The experimental apparatus required to carry out the research has now been commissioned. Many publications in progress.
Start Year 2013
 
Description JYFL Laser Spectroscopy 
Organisation University of Manchester
Country United Kingdom 
Sector Academic/University 
PI Contribution Running of the laser spectroscopy set-up, contribution to equipment/consumable funding, spokesperson of several experiments.
Collaborator Contribution Provision of laboratory space, equipment and accelerator use.
Impact Active experimental proposals have been awarded accelerator beam time by the local Programme Advisory Committee. The experimental apparatus required to carry out the research has now been commissioned. Many publications in progress.
Start Year 2013
 
Description PANS 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact PANS (Public Awareness of Nuclear Science) is an expert committee of NuPECC and the EPS for the promotion of Nuclear Science across Europe
Year(s) Of Engagement Activity 2018,2019
URL http://www.nupecc.org/pans/