Astrophysics Research at Liverpool John Moores University: Consolidated Grant Renewal (2018-2021)

Lead Research Organisation: Liverpool John Moores University
Department Name: Astrophysics Research Institute

Abstract

We will carry out work at the forefront of astrophysics using both observations and theory. The ARI's mission is to be a world-leading research centre at the highest international level of excellence. Our research uses the most advanced facilities and data analysis techniques and ARI staff are leading many of the new generation surveys. The projects in this case are technically demanding and require PDRA and other support to aid the delivery of the science.

Building on ARI's world-leading expertise in star formation (SF), we will investigate the connection between SF and gas physics in the Milky Way by: mapping the SF efficiency in 3-D and studying the connection between SF and the gas distribution close to the Galactic Centre. In a parallel study we will determine how very massive stars assemble by deriving properties of newly identified high mass pre-stellar cores in the Galactic Centre. Exploiting survey data from JCMT and Herschel and large allocations of time on the world's best mm observatory, ALMA, we will answer key questions about the connection between SF and the dense-gas physics, and the early growth of monster stars. We will also carry out simulations of the formation of stars in globular clusters. This will significantly extend previous work by incorporating realistic treatment of the precursor gas for the first time and provide a major step forward in understanding the formation of these systems.

In the area of stellar populations we will deliver a new perspective on the physical processes determining the formation and structure of the Milky Way, using extensive data from APOGEE-2, Gaia and WEAVE. These data will be used to determine orbital properties of Galactic stars and integrated with mock catalogues from models of galaxy formation, such as the EAGLE simulations.

In time-domain astrophysics we will perform an in-depth programme to study the properties of gamma-ray bursts, Supernovae Types: Ia, II and Ib/c, and their environments. We will establish the pathways to SNe Type Ia by measuring the size of a new class of Rapidly Recurring Novae in and beyond the Local Group. We will also partake in the new science of gravitational waves by searching for the electro-magnetic counterparts to coalescing binaries. We will use the most energetic transients as probes of the high-redshift Universe providing new estimates of the star-formation density at reionization. These activities capitalise on ARI's growing expertise in this field and exploit our privileged access to: (i) the SN detection surveys iPTF/ZTF; (ii) LIGO-Virgo EM follow-up experiments; (iii) the Swift-based SHOALS survey;
(iv) observations on a range of leading astronomical facilities including our own Liverpool Telescope (LT). Building on our lead in polarization measurements of transients, we will exploit the new time-domain polarimeter (MOPTOP) on the LT. We will thereby place new constraints on the magnetic field and physical geometries in extreme environments encountered in gamma-ray bursts, blazars and novae.

In galaxy evolution we will investigate the baryonic mass assembly in the Universe focussing on observations of low-luminosity galaxies and diffuse light in and around galaxies. This is essential to fully exploit the science from new facilities such as Euclid, eROSITA and LSST, in which the applicants have a strong investment. The ARI is at the forefront of developing realistic models of galaxy formation using the EAGLE and BAHAMAS simulations. Thus, through a parallel initiative to our observational work we will develop sophisticated virtual observations, delivering both ray-traced weak lensing maps and predictions of the faint stellar halo light for comparison with results from Gaia, Euclid and LSST.

To engage the public in STFC science we propose to develop a range of resources for 5 projects covering the areas i) life of a star ii) "big" and "open" data iii) astronomical and cosmological simulations.

Planned Impact

The ARI developed the National Schools' Observatory (NSO) to foster the study of science, technology and maths in young people. This major educational resource, funded by LJMU, supports over 3,000 primary & secondary schools to access the LT and has delivered more than 100,000 individual observations.

The major form of impact in this case will be centred upon Projects 2,5,6,7 and 9 (see Pathways to Impact and Section 4). These will benefit schools, amateur astronomers and the general public and will be particularly suitable for low Science Capital groups and hard-to-reach demographics (STFC Public Engagement Strategy 2016-2021). This will build on our considerable experience gained through the NSO and a suite of Distance Learning courses. It will provide opportunities for "active engagement" in the process of research, through online resources that will: (i) explore the ongoing research and (ii) allow anyone to work alongside researchers and make unique contributions.

In addition, there will be other more traditional forms of public engagement, through an ambitious programme of talks, workshops, presentations, panel discussions, Q&A sessions and articles. These will vary with respect to audience: schools (from primary upwards), amateur astronomy societies, lecture societies, WI, etc. We will also showcase the new research at events organised by the ARI (such as the annual Merseyside Astronomy Day) and others (e.g. Light Night Liverpool). The ARI has a track record of delivering provision off-the-beaten path. For example, in 2015 a visit to the Island of Yell (Shetland) which coincided with the partial solar eclipse, engaged with 200 students from 4 different schools during a 36-hour period. To provide additional resources for this type of outreach an STFC Public Engagement Awards application has been submitted.

Obviously, an exposure to current research can stimulate inquiry and interest in any audience. However, perhaps a more important benefit is to use that stimulation to promote an appreciation of science as a whole. This is particularly important for engagement with schools where astronomy has a vital role to play in promoting science and other STEM subjects as potential careers. Finally, we will encourage and support all researchers, particularly research students and PDRAs, to share their research to a variety of audiences, with our experienced Engagement team providing training and mentoring.

The ARI also carries out single outreach events, benefitting often hard to reach audiences through working with non-science organisations to enhance their work while bringing our research to previous unengaged audiences. This sort of impact is difficult to predict, as it is usually opportunistic, but examples are: (i) arts organisations and artists (cinemas, art galleries, musicians, theatre and dance companies, sculptors, photographers, writers) and (ii) organisations promoting access to education (e.g. Ogden Trust). One example of this agile approach was our development of a show garden for the 2015 Chelsea Royal Horticultural Society Show, under the theme of "Dark Matter". Our garden not only won a Gold Medal and "Best in Category" award, and had international TV coverage (estimated 211 million viewers worldwide), but also allowed us to discuss aspects of physics and cosmology with over 14,000 visitors. The garden is now on permanent display at STFC's Daresbury Laboratory in Warrington.

The University support astronomy-themed events as part of its Foundation for Citizenship Roscoe lecture series, including recently Professors Monica O'Grady (OU) and Nobel Laureate Brian Schmidt (ANU), who both attracted public audiences of nearly 1,000. In addition, the ARI organises public lectures to audiences of 200-300 in "hot" astronomy topics.

Publications

10 25 50
publication icon
Raiteri C (2019) The beamed jet and quasar core of the distant blazar 4C 71.07 in Monthly Notices of the Royal Astronomical Society

publication icon
Rajkumar P. (2020) Optimizing the search for electromagnetic counterparts to Gravitational Wave events with the Liverpool Telescope in American Astronomical Society Meeting Abstracts #235

publication icon
Ramirez-Tannus M. C. (2020) VizieR Online Data Catalog: M8, G333.6-0.2 and NGC6357 young stars (Ramirez-Tannus+, 2020) in VizieR Online Data Catalog

publication icon
Rashman M (2020) Uncooled microbolometer arrays for ground-based astronomy in Monthly Notices of the Royal Astronomical Society

publication icon
Rashman M (2020) Uncooled microbolometer arrays for ground-based astronomy in Monthly Notices of the Royal Astronomical Society

publication icon
Rathborne J. M. (2018) VizieR Online Data Catalog: MALT90 Catalogue (Rathborne+, 2016) in VizieR Online Data Catalog (other)

publication icon
Reguitti A (2021) Low-luminosity Type II supernovae - III. SN 2018hwm, a faint event with an unusually long plateau in Monthly Notices of the Royal Astronomical Society

 
Description General Astrophysics Investigation. Projects into: time domain astrophysics, galaxy evolution, stellar evolution and star formation, computational galaxy evolution and instrumentation.
Exploitation Route New projects or facilities may follow - e.g. development of £25m New Robotic Telescope; development of ecology project in game park reserves, flying astro 10 micron cameras on drones to preserve protected animal species. The ARI's project combining infrared astronomical instrumentation expertise with drone technology is impacting the way conservation agencies around the world (e.g. WWF) conduct animal surveys. The thermal-drone enables safe, routine, efficient and cost-effective monitoring and management of animal populations over large and inhospitable areas, with a factor of up to 200x increase in survey efficiency over existing methods. This provides conservation agencies greatly improved data needed to quantify and mitigate biodiversity loss. The thermal drone system is being used routinely to help local fire-fighting teams to find/extinguish annual peat fires in Indonesia which are a major contributor to anthropogenic CO2 emissions. The orders of magnitude improvement in fire extinction efficiency the system offers over existing methods will hopefully lead to substantial reduction in CO2 emissions -- a leading cause of climate change.
Sectors Education,Environment,Leisure Activities, including Sports, Recreation and Tourism,Culture, Heritage, Museums and Collections

URL http://www.astro.ljmu.ac.uk
 
Description Substantial engagement activities across all levels - schools, public, parliamentary displays, highly-cited simulations papers. Two of our Outreach staff have fEC awards to carry out impact for two funded projects this grant. Under the directorship of Professor Steve Longmore, ARI has developed a major new research area connected to environmental impact, "Astro-ecology". Longmore and team are working with conservation agencies worldwide (e.g. WWF; Endangered Wildlife Trust; Wetland Wildlife trust; National Geographic; Borneo Nature Foundation; Indonesia National Parks; Chester Zoo; Knowsley Safari Park; Morecambe Bay Search and Rescue; several universities), flying infrared instrumentation developed for astronomical purposes on drones. Applications include: animal conservation in rain forests; peat fire detection in Indonesia and human rescue at sea. Starting with an internal LJMU startup award of £25k in 2016, this work has attracted more than £1m of external funding principally through two STFC/GCRF grant awards. The ARI's project combining infrared astronomical instrumentation expertise with drone technology is impacting the way conservation agencies around the world (e.g. WWF) conduct animal surveys. The thermal-drone enables safe, routine, efficient and cost-effective monitoring and management of animal populations over large and inhospitable areas, with a factor of up to 200x increase in survey efficiency over existing methods. This provides conservation agencies greatly improved data needed to quantify and mitigate biodiversity loss. The thermal drone system is being used routinely to help local fire-fighting teams to find/extinguish annual peat fires in Indonesia which are a major contributor to anthropogenic CO2 emissions. The orders of magnitude improvement in fire extinction efficiency the system offers over existing methods will hopefully lead to substantial reduction in CO2 emissions -- a leading cause of climate change. Overall income from this work has now surpassed £1.5m.
First Year Of Impact 2018
Sector Communities and Social Services/Policy,Education,Environment
Impact Types Cultural,Societal,Economic,Policy & public services

 
Description Developing automated detection and monitoring of peat fires in Indonesia with thermal infrared sensors under drones
Amount £361,615 (GBP)
Funding ID ST/S00288X/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 04/2019 
End 03/2021
 
Description Developing opportunities for in-depth citizen science using robotic telescopes
Amount £19,936 (GBP)
Funding ID BB/T017511/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 01/2020 
End 05/2020
 
Description Developing opportunities for in-depth citizen science using robotic telescopes
Amount £19,936 (GBP)
Funding ID BB/T017511/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 01/2020 
End 04/2020
 
Description Measuring Dark Matter, Neutral Hydrogen and Neutrino Mass with Next Generation Weak Lensing and Radio Data
Amount £472,707 (GBP)
Funding ID ST/S004858/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 09/2019 
End 09/2024
 
Description Using astronomy to create STEM clubs in schools in low science capital areas
Amount £14,870 (GBP)
Funding ID ST/T005610/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 05/2020 
End 04/2022