DiRAC: Memory Intensive 2.5y

Lead Research Organisation: Durham University
Department Name: Physics

Abstract

Physicists across the astronomy, nuclear and particle physics communities are focussed on understanding how the Universe works at a very fundamental level. The distance scales with which they work vary by 50 orders of magnitude from the smallest distances probed by experiments at the Large Hadron Collider, deep within the atomic nucleus, to the largest scale galaxy clusters discovered out in space. The Science challenges, however, are linked through questions such as: How did the Universe begin and how is it evolving? and What are the fundamental constituents and fabric of the Universe and how do they interact?

Progress requires new astronomical observations and experimental data but also new theoretical insights. Theoretical understanding comes increasingly from large-scale computations that allow us to confront the consequences of our theories very accurately with the data or allow us to interrogate the data in detail to extract information that has impact on our theories. These computations test the fastest computers that we have and push the boundaries of technology in this sector. They also provide an excellent environment for training students in state-of-the-art techniques for code optimisation and data mining and visualisation.

The DiRAC2 HPC facility has been operating since 2012, providing computing resources for theoretical research in all areas of particle physics, astronomy, cosmology and nuclear physics supported by STFC. It is a highly productive facility, generating 200-250 papers annually in international, peer-reviewed journals. However, the DiRAC facility risks becoming uncompetitive as it has remained static in terms of overall capability since 2012. The DiRAC-2.5x investment in 2017/18 mitigated the risk of hardware failures, by replacing our oldest hardware components. However, as the factor 5 oversubscription of the most recent RAC call demonstrated, the science programme in 2019/20 and beyond requires a significant uplift in DiRAC's compute capability. The main purpose of the requested funding for the DiRAC2.5y project is to provide a factor 2 increase in computing across all DiRAC services to enable the facility to remain competitive during 2019/20 in anticipation of future funding for DiRAC-3.

DiRAC2.5y builds on the success of the DiRAC HPC facility and will provide the resources needed to support cutting-edge research during 2019 in all areas of science supported by STFC. While the funding is required to remain competitive, the science programme will continue to be world-leading. Examples of the projects which will benefit from this investment include:

(i) lattice quantum chromodynamics (QCD) calculations of the properties of fundamental particles from first principles;

(ii) improving the potential of experiments at CERN's Large Hadron Collider for discovery of new physics by increasing the accuracy of theoretical predictions for rare processes involving the fundamental constituents of matter known as quarks;

(iii) simulations of the merger of pairs of black holes and which generate gravitational waves such as those recently discovered by the LIGO consortium;

(iv) the most realistic simulations to date of the formation and evolution of galaxies in the Universe;

(v) the accretion of gas onto supermassive black holes, the most efficient means of extracting energy from matter and the engine which drives galaxy evolution; (vi) new models of our own Milky Way galaxy calibrated using new data from the European Space Agency's GAIA satellite; (vii) detailed simulations of the interior of the sun and of planetary interiors; (viii) the formation of stars in clusters - for the first time it will be possible to follow the formation of massive stars.

Planned Impact

The anticipated impact of the DiRAC2.5y HPC facility aligns closely with the recently published UK Industrial Strategy. As such, many of our key impacts will be driven by our engagements with industry. Each service provider for DiRAC2.5y has a local industrial strategy to deliver increased levels of industrial returns over the next three years. The "Pathways to impact" document which is attached to the lead (Leicester) proposal describes the overall industrial strategy for the DiRAC facility, including our strategic goals and key performance indicators.

Publications

10 25 50

publication icon
Ali A (2021) The growth of H ii regions around massive stars: the role of metallicity and dust in Monthly Notices of the Royal Astronomical Society

publication icon
Ali A (2019) Massive star feedback in clusters: variation of the FUV interstellar radiation field in time and space in Monthly Notices of the Royal Astronomical Society

publication icon
Allanson O (2021) Electron Diffusion and Advection During Nonlinear Interactions With Whistler-Mode Waves in Journal of Geophysical Research: Space Physics

publication icon
Altamura E (2023) Galaxy cluster rotation revealed in the MACSIS simulations with the kinetic Sunyaev-Zeldovich effect in Monthly Notices of the Royal Astronomical Society

publication icon
Altamura E (2023) EAGLE-like simulation models do not solve the entropy core problem in groups and clusters of galaxies in Monthly Notices of the Royal Astronomical Society

publication icon
Andrade T (2021) GRChombo: An adaptable numerical relativity code for fundamental physics in Journal of Open Source Software

publication icon
Ansarinejad B (2023) VST ATLAS galaxy cluster catalogue I: cluster detection and mass calibration in Monthly Notices of the Royal Astronomical Society

publication icon
Appleby S (2020) The impact of quenching on galaxy profiles in the simba simulation in Monthly Notices of the Royal Astronomical Society

publication icon
Appleby S (2020) The impact of quenching on galaxy profiles in the simba simulation in Monthly Notices of the Royal Astronomical Society

publication icon
Appleby S (2021) The low-redshift circumgalactic medium in simba in Monthly Notices of the Royal Astronomical Society

publication icon
Armijo J (2022) Making use of sub-resolution haloes in N -body simulations in Monthly Notices of the Royal Astronomical Society: Letters

publication icon
Arnold C (2022) forge : the f ( R )-gravity cosmic emulator project - I. Introduction and matter power spectrum emulator in Monthly Notices of the Royal Astronomical Society

publication icon
Arnold C (2019) Simulating galaxy formation in f(R) modified gravity: matter, halo, and galaxy statistics in Monthly Notices of the Royal Astronomical Society

publication icon
Bahé Y (2021) Strongly lensed cluster substructures are not in tension with ?CDM in Monthly Notices of the Royal Astronomical Society

publication icon
Bahé Y (2022) The importance of black hole repositioning for galaxy formation simulations in Monthly Notices of the Royal Astronomical Society

publication icon
Bamber J (2021) Quasinormal modes of growing dirty black holes in Physical Review D

publication icon
Barmentloo S (2023) Determining satellite infall times using machine learning in Monthly Notices of the Royal Astronomical Society

publication icon
Barnes D (2021) Characterizing hydrostatic mass bias with mock-X in Monthly Notices of the Royal Astronomical Society

publication icon
Barrera M (2023) The MillenniumTNG Project: semi-analytic galaxy formation models on the past lightcone in Monthly Notices of the Royal Astronomical Society

publication icon
Barrera-Hinojosa C (2022) Looking for a twist: probing the cosmological gravitomagnetic effect via weak lensing-kSZ cross-correlations in Monthly Notices of the Royal Astronomical Society

publication icon
Baugh C (2019) Linear bias forecasts for emission line cosmological surveys in Monthly Notices of the Royal Astronomical Society

publication icon
Baugh C (2022) Modelling emission lines in star-forming galaxies in Monthly Notices of the Royal Astronomical Society

publication icon
Baxter E (2021) The correlation of high-redshift galaxies with the thermal Sunyaev-Zel'dovich effect traces reionization in Monthly Notices of the Royal Astronomical Society

publication icon
Becker G (2021) The mean free path of ionizing photons at 5 < z < 6: evidence for rapid evolution near reionization in Monthly Notices of the Royal Astronomical Society

publication icon
Beckett A (2021) The relationship between gas and galaxies at z  < 1 using the Q0107 quasar triplet in Monthly Notices of the Royal Astronomical Society

publication icon
Belokurov V (2023) Energy wrinkles and phase-space folds of the last major merger in Monthly Notices of the Royal Astronomical Society

publication icon
Benitez-Llambay A (2020) The detailed structure and the onset of galaxy formation in low-mass gaseous dark matter haloes in Monthly Notices of the Royal Astronomical Society

publication icon
Bennett E (2021) Glueballs and strings in S p ( 2 N ) Yang-Mills theories in Physical Review D

publication icon
Borrow J (2023) The impact of stochastic modelling on the predictive power of galaxy formation simulations in Monthly Notices of the Royal Astronomical Society

publication icon
Borrow J (2020) Cosmological baryon transfer in the simba simulations in Monthly Notices of the Royal Astronomical Society

publication icon
Bose B (2020) On the road to per cent accuracy IV: ReACT - computing the non-linear power spectrum beyond ?CDM in Monthly Notices of the Royal Astronomical Society

publication icon
Bose S (2023) The progenitor galaxies of stellar haloes as 'failed' Milky Ways in Monthly Notices of the Royal Astronomical Society

publication icon
Braspenning J (2023) Sensitivity of non-radiative cloud-wind interactions to the hydrodynamic solver in Monthly Notices of the Royal Astronomical Society

publication icon
Brooks R (2023) The north-south asymmetry of the ALFALFA H i velocity width function in Monthly Notices of the Royal Astronomical Society

publication icon
Brown S (2022) Towards a universal model for the density profiles of dark matter haloes in Monthly Notices of the Royal Astronomical Society

publication icon
Brown S (2020) Connecting the structure of dark matter haloes to the primordial power spectrum in Monthly Notices of the Royal Astronomical Society