Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

Lead Research Organisation: Royal Holloway University of London
Department Name: Physics

Abstract

The QUEST-DMC programme seeks to answer some of the most fundamental questions facing modern physics: What is the physics of the early universe? What is the nature of dark matter? What is the origin of the matter-antimatter asymmetry? We will focus on the investigation of two core building blocks of early universe cosmology, which may be fundamentally linked; the identity and nature of dark matter and the physics of phase transitions. By combining a macroscopic quantum system, superfluid helium-3 (3He), with state-of-the-art quantum technologies we will pioneer a new dark matter search experiment with unprecedented discovery potential. In parallel we will use the unique properties of superfluid 3He as a quantum simulator of phase transitions in the early universe.

Dark Matter plays a vital role in the evolution of the universe, for example, it played a central role in the formation of structure in early universe and today plays a key role in stopping galaxies flying apart. The focus of dark matter studies and searches to date has been on Weakly Interacting Massive Particles (WIMPs) whose predicted mass range is broadly speaking between 10-1000 times that of the proton. The direct, indirect and collider searches for this dark matter candidate to date have been extensive but ultimately unsuccessful. There is a strong motivation to widen the search.

The fact that the universe only consists of matter with no anti-matter requires explanation, since it is reasonable to assume that matter and anti-matter were produced in equal quantities in the Big Bang. This implies that during the evolution of the universe a process took place that dynamically generated the asymmetry between matter and anti-matter. Models linking the dynamics of dark matter with the generation of the matter/anti-matter asymmetry naturally predict a mass scale of dark matter that is close to the mass of the proton, of order 1 GeV/c2, suggesting an alternative target mass range to the standard WIMP. This project will create and operate a detector for the direct search of dark matter with sub-GeV masses using superfluid helium-3 as a target with world-leading sensitivity.

The second major component of this project is a detailed investigation of the physics of phase transitions. Phase transitions are a key prediction of the symmetry-breaking paradigm of the Standard Model of particle physics in extreme conditions, such as those of the early universe or inside neutron stars. A first-order phase transition produces a characteristic gravitational wave signature and forms a leading motivation for gravitational wave searches. According to our current understanding of the mechanism of phase transitions, called nucleation theory, no gravitational waves are predicted in Standard Model. If gravitational waves are detected and their origins can be linked to a phase transition in the early universe then this would be evidence of Physics beyond the Standard Model of particle physics, with high impact on our understanding of fundamental physics. It is critical that the physics of phase transitions is tested so that experiments such as the approved European Space Agency mission LISA due for launch in 2034 are fully exploited. This project will do this using phase transitions between different quantum vacua in superfluid 3He, under controlled conditions, as a quantum analogue.

This programme brings together the frontiers of cosmology, ultralow temperatures and quantum technology.
Both experiments exploit the unique properties of superfluid helium-3, cooled to 100 microkelvin above absolute zero. It will rely on a range of state-of-the-art superconducting quantum sensors, and nanofabricated structures such as nanobeam resonators, and structured nanoscale confinement. Future developments in quantum technologies will generate further improvements in sensitivity and range of the sub-GeV dark matter search in the longer term.

Planned Impact

This proposal details interlinked research programmes that address two fundamental open questions in cosmology; what is the nature of dark matter and what will be the observable consequences of phase transitions in the early universe? To address these questions we will employ sensors exploiting recent developments in Quantum Technologies operated in low noise, ultra-low temperature environments. The results obtained will be compared with theoretical models developed within QUEST-DMC, impacting on a wide range of beneficiaries beyond academia. This summary details who those beneficiaries are and what the positive impacts on them will be.
Who will benefit?
Our fundamental research drives forward the development of state-of-the-art research capacity. At RHUL, the UK Centre for Superconducting and Hybrid Quantum Systems (UK-CSQS), Superfab, is dedicated to the development of quantum device technology through the application of fundamental phenomena based on superconductivity. At LU the Quantum Technology Centre contains state-of-the-art nanofabrication facilities. Both facilities are integral in the quantum technology supply chain. Developments in instrumentation measurement systems directly benefit the strong UK scientific instruments industry, especially those focussed on cryogenics, nanoscience and superconducting technologies, such as Oxford Instruments Nanoscience.
In the longer term, applications in health care and environmental monitoring will benefit from advances in sensor technology or measurement techniques, developed in this work, with positive societal as well as economic impacts.
The key demographics that are being targeted by our public engagement strategy are: primary and secondary school students (in particular encouraging girls to develop an interest in physics to try to address the under-representation of women in physics at all levels); teachers of GCSE Science and A-level Physics (providing a teacher with inspirational material has a multiplier effect on the audience reached); undergraduate students; the physics interested public in the local communities of the four partner institutions, and nationally through participation in Science Festivals; and finally we have plans to target the adult low science capital demographic who would not normally attend a science event.

How will they benefit?
The benefit to the scientific instrument industry will be through: direct collaboration on potential commercial products exploiting new technologies; knowledge exchange through consultation with the expertise of QUEST-DMC; and via the export of highly trained manpower to industry. The research described in this proposal combines new techniques in ultralow temperature physics, new measurement techniques and devices, and a robust confrontation between theory and experiment. Individuals trained in these skills and expertise, equipped with rigorous scientific methodology, are an important resource enhancing economic competitiveness.

The public will be made more prepared for the disruptive technologies that will be driven by the current quantum revolution. We will raise awareness through a range of public engagement activities detailed in the pathways to impact, organised in partnership with schools, professional bodies, the Ogden Trust, the Smallpeice Trust, the Stephen Hawking Foundation and the network of university public engagement and outreach teams that are part of QUEST-DMC.

What will be done to ensure that they benefit?
The accompanying pathways to impact details the specific measures and activities put in place to ensure that we maximise the opportunities for impact. Long-standing partnerships with National Measurement Institutes (NPL, PTB, MIKES), international dark matter consortia, the European Microkelvin Platform, Quantum Technology hubs and academic partners around the world provide additional avenues to amplify the impact via arrangements for technology and knowledge exchange.

Publications

10 25 50
 
Description Pushing the boundaries of superfluid vacuum and coherence
Amount £1,510,206 (GBP)
Funding ID EP/W015730/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 03/2022 
End 02/2027
 
Description Cornell He3 experimental research group 
Organisation Cornell University
Country United States 
Sector Academic/University 
PI Contribution Collaboration on paper.
Collaborator Contribution Experiments on phase transitions in superfluid He3
Impact None so far.
Start Year 2021
 
Title Cryogen-free nuclear demagnetisation platform 
Description Developed a rapid, robust cryogen-free nuclear demagnetisation system that has a duty cycle of being able to spend 95% of operating time below 1 mK. 
IP Reference  
Protection Trade Mark
Year Protection Granted 2022
Licensed Yes
Impact The creation of the prototype cryogen-free nuclear demagnetisation has provide access to ULT through the European Microkelvin Platform
 
Title METHOD AND SYSTEM FOR OPTIMISING THE OPERATING TEMPERATURE OF SUPERCONDUCTING QUANTUM PROCESSORS 
Description The immersion of superconducting devices in helium-three has been demonstrated. The devices could be cooled to below 1 mK, The noise from two-level fluctuators (a major source of decoherence for Qubits) has been observed to be suppressed in this environment, entering a new regime where the noise decreases as the temperature decreases. 
IP Reference N39249-GB1 
Protection Patent / Patent application
Year Protection Granted 2022
Licensed No
Impact A method of cooling and controlling the temperature of superconducting quantum processors that can achieve temperatures below 1 mK.
 
Description Institute of Physics Low Temperature Techniques Course 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Postgraduate students
Results and Impact The purpose of the meeting is to disseminate best practice and raise awareness of new innovations in low temperature techniques and thermometry to each new national cohort of PhD students and postdoctoral researchers embarking on a research career at low temperatures. In addition we raise the awareness of how those skills can be employed in an industrial environment. Each year the event is attended by around 50 delegates (mainly 1st year PhD students, occasionally international), the students report a raised awareness and begin to create the support network with each other and the speakers at the event that will help them during there career. The event is organised and chaired by: Dr. Andrew Casey (with support from the IOP) Dr. Andrew Casey and Dr. Jan Nyeki both give presentations at the event. The event is supported by an annual grant from the IOP Low Temperature group of £1000, which is used to reduce the cost of attendance. The event is publicised by the IOP through it's website and newsletters. An e-version of the material presented is distributed to all of the delegates.
grant from the IOP Low Temperature group of £1000, which is used to reduce the cost of attendance. The event is publicised by the IOP through it's website and newsletters. An e-version of the material presented is distributed to all of the delegates.
Year(s) Of Engagement Activity 2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021
URL https://www.iopconferences.org/
 
Description Quantum Technology Showcase (London) 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact Highlighting the quantum technology capabilities to a wide audience. Following this meeting, a delegation from the US embassy in London requested an onsite visit to discuss future collaborations.
Year(s) Of Engagement Activity 2021
URL https://ktn-uk.org/events/uk-national-quantum-technologies-showcase-2021/
 
Description Scout Visit (London) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Other audiences
Results and Impact 30 explorer scouts plus scout leaders attended a visit to our research organization for a talk on low-temperature physics. Several scouts reported plans to change their A0level choice to include physics.
Year(s) Of Engagement Activity 2021