A Consolidated Grant Proposal for Solar and Planetary Science at the University of Leicester, 2022 - 2025

Lead Research Organisation: University of Leicester
Department Name: Physics and Astronomy

Abstract

We propose a world-class programme of research that focuses on 3 main areas of study concerned with our solar system. The first involves study of the outer environments of the planets where the gas is ionised, such that it not only feels the gravitational pull of the planet, but also interacts strongly with its magnetic and electric fields. In the second area we seek to study the origin and evolution of solar system bodies, through examination of materials from asteroid, chondrite and lunar samples, and through laboratory-based exploration of X-ray fluorescence from Mercury analogues. The third area will employ spectroscopy from the James Webb Space Telescope (JWST) and ground observatories to explore the planetary stratospheres and tropospheres at the ice giants Uranus and Neptune.

Previous work in the first area shows that the outer environments of the planets vary widely, determined by the interaction with the plasma that blows continuously from the Sun on the outside, and the interaction with the planet and its moons on the inside. The solar wind is prone to outbursts that can lead to magnetic storms and bright auroras at Earth, as well as varying strongly over the solar cycle, and with distance from the Sun. Its interaction with the planets then depends on whether the planet is magnetised, has an atmosphere, and has active moons. We will use MESSENGER data to study Mercury close to the Sun, a planet that has a magnetic field but almost no atmosphere; use the constellation of spacecraft at Mars, more distant from the Sun, which has an atmosphere but no strong magnetic field to prevent its erosion by the solar wind; and combine multi-spacecraft and ground instrumentation at Earth, at intermediate distances having both an atmosphere and a magnetic field. We will also study the strongly magnetized giant planets Jupiter and Saturn using data from the Juno mission at Jupiter and Cassini at Saturn, combined with observations of the auroras at ultraviolet wavelengths using the Hubble Space Telescope and at infrared wavelengths using large ground-based telescopes. Auroras are caused by large-scale electric currents flowing between the outer environments and the upper ionized atmospheres, which communicate force between these regions. Overall emphasis will be on the complex physical processes that couple the solar wind on the outside, the magnetic field surrounding the planet (if any), and the planetary atmospheres or surface on the inside.

In the second area, laboratory studies, we will analyse material returned from C-class asteroid Ryugu by the Hayabusa2 mission. We will make complementary analyses on Apollo lunar regolith grains and recent, unique carbonaceous chondrite falls to build a new understanding of space weathering and C-class asteroid parent body processes. This project builds on the leading expertise we have in the microanalysis of planetary materials, through electron microscopy at ePSIC and UoL, and synchrotron-based X-ray spectroscopy. Laboratory work focused on Mercury will centre on the MIXS Ground Reference Facility, a purpose-built system to allow detailed analysis of X-ray fluorescence, induced using an X-ray or electron source, for bespoke surface analogues. This laboratory facility will uniquely allow us to expand our science programme using the MIXS data from the BepiColombo mission, both in relation to the dayside surface composition goals at global and local scales on Mercury, and in terms of the nightside magnetosphere-surface interaction which produces a significant X-ray fluorescence associated with electron bombardment.

The final theme leverages Leicester's leadership of the guaranteed-time giant planets programme on the JWST, exploiting MIRI spectroscopic maps of the Ice Giants Uranus and Neptune, combined with a ground-based observation programme, to understand how stratospheric circulation, photochemistry, and tropospheric meteorology shape the atmospheres of sub-giant-sized worlds.

Publications

10 25 50
publication icon
Carter J (2022) RAS Specialist Discussion Meeting report in Astronomy & Geophysics

publication icon
Sangha? H (2022) Statistical Analysis of Bifurcating Region 2 Field-Aligned Currents Using AMPERE in Frontiers in Astronomy and Space Sciences

publication icon
Alberti T (2022) Editorial: Interplanetary medium variability as observed in the new era of spacecraft missions in Frontiers in Astronomy and Space Sciences

publication icon
Sánchez-Cano B (2023) Mars' ionosphere: The key for systematic exploration of the red planet in Frontiers in Astronomy and Space Sciences

publication icon
Cecconi B (2022) Effect of an Interplanetary Coronal Mass Ejection on Saturn's Radio Emission in Frontiers in Astronomy and Space Sciences

publication icon
Irwin PGJ (2022) Hazy Blue Worlds: A Holistic Aerosol Model for Uranus and Neptune, Including Dark Spots. in Journal of geophysical research. Planets

publication icon
Wellbrock A (2022) Observations of a Solar Energetic Particle Event From Inside and Outside the Coma of Comet 67P. in Journal of geophysical research. Space physics

publication icon
King O (2022) Global Modeling of Ganymede's Surface Composition: Near-IR Mapping From VLT/SPHERE in Journal of Geophysical Research: Planets

publication icon
Grocott A (2023) SuperDARN Observations of the Two Component Model of Ionospheric Convection in Journal of Geophysical Research: Space Physics

publication icon
Bower G (2022) Occurrence Statistics of Horse Collar Aurora in Journal of Geophysical Research: Space Physics

publication icon
Bower G (2022) Transpolar Arcs: Seasonal Dependence Identified by an Automated Detection Algorithm in Journal of Geophysical Research: Space Physics

publication icon
Milan S (2023) Solar Cycle and Solar Wind Dependence of the Occurrence of Large dB / dt Events at High Latitudes in Journal of Geophysical Research: Space Physics

publication icon
Milan S (2022) Lobe Reconnection and Cusp-Aligned Auroral Arcs in Journal of Geophysical Research: Space Physics

publication icon
Stergiopoulou K (2022) A Two-Spacecraft Study of Mars' Induced Magnetosphere's Response to Upstream Conditions in Journal of Geophysical Research: Space Physics

publication icon
Fleetham A (2023) Solar Wind Control of Hemispherically-Integrated Field-Aligned Currents at Earth in Journal of Geophysical Research: Space Physics

publication icon
Milan S (2022) Influence of Off-Sun-Earth Line Distance on the Accuracy of L1 Solar Wind Monitoring in Journal of Geophysical Research: Space Physics

publication icon
Aizawa S (2022) LatHyS global hybrid simulation of the BepiColombo second Venus flyby in Planetary and Space Science

publication icon
Pinto M (2022) The BepiColombo Environment Radiation Monitor, BERM in Space Science Reviews