NOC Marine Systems Modelling
Lead Research Organisation:
NATIONAL OCEANOGRAPHY CENTRE
Department Name: UNLISTED
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Organisations
- NATIONAL OCEANOGRAPHY CENTRE (Lead Research Organisation)
- National Center for Scientific Research (Centre National de la Recherche Scientifique CNRS) (Collaboration)
- Meteorological Office UK (Collaboration)
- Mercator Océan (Collaboration)
- Euro-Mediterranean Center on Climate Change (CMCC) (Collaboration)
People |
ORCID iD |
Jason Holt (Principal Investigator) |
Publications
Ardhuin F
(2018)
Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept
in Ocean Science
Lengaigne M
(2011)
Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes
in Climate Dynamics
Megann A
(2021)
Mechanisms for Late 20th and Early 21st Century Decadal AMOC Variability
in Journal of Geophysical Research: Oceans
Zuo H
(2012)
Mechanisms of subantarctic mode water upwelling in a hybrid-coordinate global GCM
in Ocean Modelling
Hu Z
(2021)
Mechanistic Modeling of Marsh Seedling Establishment Provides a Positive Outlook for Coastal Wetland Restoration Under Global Climate Change
in Geophysical Research Letters
Hemmings J
(2015)
Mechanistic site-based emulation of a global ocean biogeochemical model (MEDUSA 1.0) for parametric analysis and calibration: an application of the Marine Model Optimization Testbed (MarMOT 1.1)
in Geoscientific Model Development
Palmieri J
(2021)
Med-BGC MIP: A Mediterranean Biogeochemical models comparison.
Skliris N
(2018)
Mediterranean sea water budget long-term trend inferred from salinity observations
in Climate Dynamics
Yool A
(2011)
Medusa-1.0: a new intermediate complexity plankton ecosystem model for the global domain
in Geoscientific Model Development
Yool A
(2013)
MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies
in Geoscientific Model Development
Aldama-Campino A
(2020)
Meridional Ocean Carbon Transport
in Global Biogeochemical Cycles
Baringer MO
(2015)
Meridional overturning circulation observations in the North Atlantic Ocean
in Bulletin of the American Meteorological Society
Treguier A
(2014)
Meridional transport of salt in the global ocean from an eddy-resolving model
in Ocean Science
Robinson C
(2010)
Mesopelagic zone ecology and biogeochemistry - a synthesis
in Deep Sea Research Part II: Topical Studies in Oceanography
Oerder V
(2016)
Mesoscale SST-wind stress coupling in the Peru-Chile current system: Which mechanisms drive its seasonal variability?
in Climate Dynamics
Anderson T
(2015)
Michael John Robert Fasham. 29 May 1942 - 7 June 2008
in Biographical Memoirs of Fellows of the Royal Society
Mayor DJ
(2014)
Microbial gardening in the ocean's twilight zone: detritivorous metazoans benefit from fragmenting, rather than ingesting, sinking detritus: fragmentation of refractory detritus by zooplankton beneath the euphotic zone stimulates the harvestable production of labile and nutritious microbial biomass.
in BioEssays : news and reviews in molecular, cellular and developmental biology
De Melo Virissimo F
(2019)
Microthesis: Dynamical systems methods for waves in fluids: Stability, breaking and mixing
in London Mathematical Society Newsletter
Cole H
(2012)
Mind the gap: The impact of missing data on the calculation of phytoplankton phenology metrics
in Journal of Geophysical Research: Oceans
Drobinski P
(2012)
Model of the Regional Coupled Earth system (MORCE): Application to process and climate studies in vulnerable regions
in Environmental Modelling & Software
Kjellsson J
(2015)
Model sensitivity of the Weddell and Ross seas, Antarctica, to vertical mixing and freshwater forcing
in Ocean Modelling
Garry F
(2019)
Model-Derived Uncertainties in Deep Ocean Temperature Trends Between 1990 and 2010
in Journal of Geophysical Research: Oceans
De Mey-Frémaux P
(2019)
Model-Observations Synergy in the Coastal Ocean
in Frontiers in Marine Science
Payo A
(2017)
Modeling daily soil salinity dynamics in response to agricultural and environmental changes in coastal Bangladesh
in Earth's Future
Gomez-Enri J
(2010)
Modeling Envisat RA-2 Waveforms in the Coastal Zone: Case Study of Calm Water Contamination
in IEEE Geoscience and Remote Sensing Letters
Mayorga-Adame C
(2017)
Modeling Larval Connectivity of Coral Reef Organisms in the Kenya-Tanzania Region
in Frontiers in Marine Science
Wakelin S
(2012)
Modeling the carbon fluxes of the northwest European continental shelf: Validation and budgets
in Journal of Geophysical Research: Oceans
Barthélemy A
(2015)
Modeling the interplay between sea ice formation and the oceanic mixed layer: Limitations of simple brine rejection parameterizations
in Ocean Modelling
Phelps J
(2015)
Modelling large-scale CO 2 leakages in the North Sea
in International Journal of Greenhouse Gas Control
Fischer R
(2022)
Modelling submerged biofouled microplastics and their vertical trajectories
in Biogeosciences
O'Neill C
(2012)
Modelling temperature and salinity in Liverpool Bay and the Irish Sea: sensitivity to model type and surface forcing
in Ocean Science
Powley H
(2024)
Modelling terrigenous DOC across the north west European Shelf: Fate of riverine input and impact on air-sea CO2 fluxes
in Science of The Total Environment
Wakelin S
(2015)
Modelling the combined impacts of climate change and direct anthropogenic drivers on the ecosystem of the northwest European continental shelf
in Journal of Marine Systems
Kay S
(2015)
Modelling the increased frequency of extreme sea levels in the Ganges-Brahmaputra-Meghna delta due to sea level rise and other effects of climate change.
in Environmental science. Processes & impacts
Lévy M
(2010)
Modifications of gyre circulation by sub-mesoscale physics
in Ocean Modelling
Rayner D
(2011)
Monitoring the Atlantic meridional overturning circulation
in Deep Sea Research Part II: Topical Studies in Oceanography
Sinha B
(2012)
Mountain ranges favour vigorous Atlantic meridional overturning
in Geophysical Research Letters
Holt J
(2012)
Multi-decadal variability and trends in the temperature of the northwest European continental shelf: A model-data synthesis
in Progress in Oceanography
Moore J
(2024)
Multi-Model Simulation of Solar Geoengineering Indicates Avoidable Destabilization of the West Antarctic Ice Sheet
in Earth's Future
De Dominicis M
(2017)
Multi-scale ocean response to a large tidal stream turbine array
in Renewable Energy
Perrette M
(2011)
Near-ubiquity of ice-edge blooms in the Arctic
in Biogeosciences
Marsh R
(2015)
NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution
in Geoscientific Model Development
Lee YJ
(2016)
Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models.
in Journal of geophysical research. Oceans
Description | The mission of the Marine Systems Modelling group is to advance our understanding of the marine environment and improve our ability to predict the Earth System on timescales of days to centuries. We work at national, regional and global scales from the coasts to the open ocean and specifically consider the dynamic links between these scales. We achieve this mission through the development, application, assessment and analysis of world-leading ocean models. We aim to exploit this understanding and capability to address societally relevant issues and deliver clear and traceable impacts. |
Exploitation Route | a wide range of scientific, innovation and policy relevant application involving ocean models. |
Sectors | Aerospace Defence and Marine Agriculture Food and Drink Digital/Communication/Information Technologies (including Software) Environment Leisure Activities including Sports Recreation and Tourism Transport |
URL | http://noc.ac.uk/science/research-areas/marine-systems-modelling |
Description | The findings of this award have been used as follows:- • Climate change impacts Man-made climate change has been estimated to cost the UK economy 5-20% of Gross Domestic Product (GDP)1 amounting to £80-320 billion for 2011 GDP2. The National Oceanography Centre (NOC) is providing impartial, independent, world-leading expertise in developing the international scientific consensus that informs the Intergovernmental Panel on Climate Change (IPCC) series of Assessment Reports3. NOC provides authoritative oceanographic scientific evidence to underpin the assessments, necessary as climate change has enormous economic and societal implications. NOC research is a significant contributor to the international delivery of evidence on ocean circulation, global temperature, sea level and climate. In response to research evidence presented by the IPCC the UK parliament passed the world's first long-term legally binding framework to tackle the dangers of climate change (The Climate Change Act 20086). The act requires Government to set carbon budgets, which are limits on greenhouse gas emissions in the UK for consecutive five-year periods. In addition to IPCC assessments, NOC data and expertise, including sea-level from PSMSL (Permanent Service for Mean Sea Level), inform studies of impacts of climate change on both national and international levels [e.g. UK Marine Climate Change Impacts Partnership (MCCIP), UK Climate Impacts Programme (UKCIP), UK Foresight Flood and Coastal Defence Review, Charting Progress and Charting Progress 2 • Sustainability and health of UK National seas NOC was pivotal in providing advice and evidence feeding into UK assessments on "clean, healthy, safe, productive and biologically diverse oceans and seas". These underpin legislation aimed at achieving this vision, specifically the EU Marine Strategy Framework Directive. In the UK this took the form of the report: "Charting Progress 2 (CP2): The State of UK Seas", and the on-going Evidence Groups. Alongside this, the Marine Climate Change Impacts Partnership (MCCIP) and UKCP09 (UK Climate Projections 09) provide assessments of potential future conditions and substantially contributing to the on-going UKCP18 assessment. NOC is the leading UK organisation for providing this evidence, advice, information and future projections for physical oceanography. Its scientists were lead / co-authors for CP2 "Ocean Processes" chapter, most MCCIP science reviews, and the UKCP09 Marine Section. • Improved seasonal forecasting Improved seasonal forecasting of UK winter weather conditions months in advance is key to our ability to manage our environment and resources responsibly, and to be resilient to hazards. For instance, environmental change will affect our infrastructure (through storms, flooding and coastal erosion - particularly damaging for the South-west coastline and the Somerset levels during the winter of 2013/14), food, water and energy resources (changes to rainfall and wind) and the health of our population (the incidence of influenza is related to winter temperatures). Improved seasonal forecasting is therefore of immense societal importance for the UK population, and to our Government for planning and policy development. Many sectors of the UK economy (transport, agriculture, health, etc) need accurate forecasts of weather conditions many months in advance (seasonal forecasts) for planning purposes. These forecasts are provided to UK Government by operational systems run at the Met Office. Through a major strategic partnership, the Joint Weather and Climate Research Programme, a coordinated programme of effort has been established between NOC and the Met Office to provide the best possible ocean models to Met Office forecasting systems. New higher resolution ocean models have in this way been included in the latest seasonal forecasting systems and have led to a dramatic improvement in the skill of winter forecasts for the UK, with widespread benefits to the UK. NOC also works with Met Office in the UK Environmental Prediction Project to develop a national scale land-sea-wave-atmosphere couple system with the aim of improving forecasting of environmental hazards such as coastal flooding and extreme rain fall events. NOC plays a pivotal role in the development and assessment of marine forecasts and reanalysing products delivered by the Copernicus Marine Environmental Monitoring Service. These provide key environmental information for a range of downstream industrial, operational and policy stakeholders. |
Sector | Aerospace, Defence and Marine,Agriculture, Food and Drink,Energy,Environment,Healthcare,Leisure Activities, including Sports, Recreation and Tourism,Government, Democracy and Justice,Transport |
Impact Types | Societal Economic Policy & public services |
Description | Climate Change Impacts |
Geographic Reach | National |
Policy Influence Type | Citation in other policy documents |
Impact | Man-made climate change has been estimated to cost the UK economy 5-20% of Gross Domestic Product (GDP)1 amounting to £80-320 billion for 2011 GDP2. The National Oceanography Centre (NOC) is providing impartial, independent, world-leading expertise in developing the international scientific consensus that informs the Intergovernmental Panel on Climate Change (IPCC) series of Assessment Reports3. NOC provides authoritative oceanographic scientific evidence to underpin the assessments, necessary as climate change has enormous economic and societal implications. NOC research is a significant contributor to the international delivery of evidence on ocean circulation, global temperature, sea level and climate. In response to research evidence presented by the IPCC the UK parliament passed the world's first long-term legally binding framework to tackle the dangers of climate change (The Climate Change Act 20086). The act requires Government to set carbon budgets, which are limits on greenhouse gas emissions in the UK for consecutive five-year periods. In addition to IPCC assessments, NOC data and expertise, including sea-level from PSMSL (Permanent Service for Mean Sea Level), inform studies of impacts of climate change on both national and international levels [e.g. UK Marine Climate Change Impacts Partnership (MCCIP), UK Climate Impacts Programme (UKCIP), UK Foresight Flood and Coastal Defence Review, Charting Progress and Charting Progress 2. |
Description | Improved Seasonal Forecasting |
Geographic Reach | Europe |
Policy Influence Type | Participation in a guidance/advisory committee |
Impact | Improved seasonal forecasting of UK winter weather conditions months in advance is key to our ability to manage our environment and resources responsibly, and to be resilient to hazards. For instance, environmental change will affect our infrastructure (through storms, flooding and coastal erosion - particularly damaging for the South-west coastline and the Somerset levels during the winter of 2013/14), food, water and energy resources (changes to rainfall and wind) and the health of our population (the incidence of influenza is related to winter temperatures). Improved seasonal forecasting is therefore of immense societal importance for the UK population, and to our Government for planning and policy development. Many sectors of the UK economy (transport, agriculture, health, etc) need accurate forecasts of weather conditions many months in advance (seasonal forecasts) for planning purposes. These forecasts are provided to UK Government by operational systems run at the Met Office. Through a major strategic partnership, the Joint Weather and Climate Research Programme, a coordinated programme of effort has been established between NOC and the Met Office to provide the best possible ocean models to Met Office forecasting systems. New higher resolution ocean models have in this way been included in the latest seasonal forecasting systems and have led to a dramatic improvement in the skill of winter forecasts for the UK, with widespread benefits to the UK. |
Description | Sustainability and health of UK national seas |
Geographic Reach | Asia |
Policy Influence Type | Citation in other policy documents |
Impact | NOC was pivotal in providing advice and evidence feeding into UK assessments on "clean, healthy, safe, productive and biologically diverse oceans and seas". These underpin legislation aimed at achieving this vision, specifically the EU Marine Strategy Framework Directive. In the UK this took the form of the report: "Charting Progress 2 (CP2): The State of UK Seas", and the on-going Evidence Groups. Alongside this, the Marine Climate Change Impacts Partnership (MCCIP) and UKCP09 (UK Climate Projections 09) provide assessments of potential future conditions. NOC is the leading UK organisation for providing this evidence, advice, information and future projections for physical oceanography. Its scientists were lead / co-authors for CP2 "Ocean Processes" chapter, most MCCIP science reviews, and the UKCP09 Marine Section. |
Description | Sources, impacts and solutions for plastics in South East Asia coastal environments |
Amount | £53,772 (GBP) |
Funding ID | NE/V009591/1 |
Organisation | Natural Environment Research Council |
Sector | Public |
Country | United Kingdom |
Start | 11/2020 |
End | 11/2024 |
Description | NEMO Consortium |
Organisation | Euro-Mediterranean Center on Climate Change (CMCC) |
Country | Italy |
Sector | Charity/Non Profit |
PI Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Collaborator Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Impact | The consortium provides regular model code updates (currently V4). These form the basis for most model based operational, climate and research oceanography in Europe, including the UK, Frence and italian contributions the CMIP process informing the IPCC Assessment and Special Reports, and also the Copernicus Marine Environmental Monitoring Service. |
Start Year | 2008 |
Description | NEMO Consortium |
Organisation | Mercator Océan |
Country | France |
Sector | Private |
PI Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Collaborator Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Impact | The consortium provides regular model code updates (currently V4). These form the basis for most model based operational, climate and research oceanography in Europe, including the UK, Frence and italian contributions the CMIP process informing the IPCC Assessment and Special Reports, and also the Copernicus Marine Environmental Monitoring Service. |
Start Year | 2008 |
Description | NEMO Consortium |
Organisation | Meteorological Office UK |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Collaborator Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Impact | The consortium provides regular model code updates (currently V4). These form the basis for most model based operational, climate and research oceanography in Europe, including the UK, Frence and italian contributions the CMIP process informing the IPCC Assessment and Special Reports, and also the Copernicus Marine Environmental Monitoring Service. |
Start Year | 2008 |
Description | NEMO Consortium |
Organisation | National Center for Scientific Research (Centre National de la Recherche Scientifique CNRS) |
Country | France |
Sector | Academic/University |
PI Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Collaborator Contribution | The NEMO consortium mainains and developes the NEMO (Nucleus for European Modelling of the Ocean) ocean model. This is a state-of-the-art modelling framework for research activities and forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium. |
Impact | The consortium provides regular model code updates (currently V4). These form the basis for most model based operational, climate and research oceanography in Europe, including the UK, Frence and italian contributions the CMIP process informing the IPCC Assessment and Special Reports, and also the Copernicus Marine Environmental Monitoring Service. |
Start Year | 2008 |
Description | NOC and Met Office Collaboration |
Organisation | Meteorological Office UK |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Under the Joint Weather and Climate Research Programme (JWCRP) between NERC and the Met Office, we have forged a strong strategic partnership with the Met Office. This takes the form of the Joint Marine Modelling Project (JMMP; formerly JOMP; the Joint Ocean Modelling Programme and JCOMP; the Joint Coastal Ocean Modelling Programme). JMMP comprises staff from both NOC (from the Marine Systems Modelling group) and the Met Office and enables the best possible versions of the NEMO global and coastal-ocean models to be taken up into predictive systems at the Met Office (for ocean forecasting, coupled weather forecasting, seasonal prediction, decadal prediction, and climate and earth system modelling). Successive versions of NEMO are developed internationally on a regular cycle and have a number of new options. The benefit of these options are assessed both individually and in various combinations through undertaking decadal timescale simulations on MONSooN, a supercomputer facility shared between NERC and the Met Office, and identical in architecture to the main Met Office supercomputer. Once the optimal combination of options has been ascertained, the NEMO model can then be rapidly and easily taken up into the predictive systems at the Met Office. The cycle is repeated approximately every 1-2 years. The shelf seas activities, specifically support the models run operationally in the shelf sea forecasting and reanalysis system at the Met Office and delivered by the European Copernicus Marine Environmental Monitoring Service. Alongside JMMP, the National Partnership for Ocean Prediction (formally known as the National Centre for Ocean Forecasting) aims to develop and promote the application of world-leading marine products and services to stakeholders, with a focus on national and public benefit. This is achieved firstly through the integration of models, observations and scientific understanding to produce the best information and advice about the marine environment, with rigorous quality assurance and traceability; and secondly through engaging with stakeholders to understand their requirements and to maximise the beneficial use of marine products and services. |
Collaborator Contribution | Under the Joint Weather and Climate Research Programme (JWCRP) between NERC and the Met Office, we have forged a strong strategic partnership with the Met Office. This takes the form of the Joint Marine Modelling Project (JMMP; formerly JOMP; the Joint Ocean Modelling Programme and JCOMP; the Joint Coastal Ocean Modelling Programme). JMMP comprises staff from both NOC (from the Marine Systems Modelling group) and the Met Office and enables the best possible versions of the NEMO global and coastal-ocean models to be taken up into predictive systems at the Met Office (for ocean forecasting, coupled weather forecasting, seasonal prediction, decadal prediction, and climate and earth system modelling). Successive versions of NEMO are developed internationally on a regular cycle and have a number of new options. The benefit of these options are assessed both individually and in various combinations through undertaking decadal timescale simulations on MONSooN, a supercomputer facility shared between NERC and the Met Office, and identical in architecture to the main Met Office supercomputer. Once the optimal combination of options has been ascertained, the NEMO model can then be rapidly and easily taken up into the predictive systems at the Met Office. The cycle is repeated approximately every 1-2 years. The shelf seas activities, specifically support the models run operationally in the shelf sea forecasting and reanalysis system at the Met Office and delivered by the European Copernicus Marine Environmental Monitoring Service. Alongside JMMP, the National Partnership for Ocean Prediction (formally known as the National Centre for Ocean Forecasting) aims to develop and promote the application of world-leading marine products and services to stakeholders, with a focus on national and public benefit. This is achieved firstly through the integration of models, observations and scientific understanding to produce the best information and advice about the marine environment, with rigorous quality assurance and traceability; and secondly through engaging with stakeholders to understand their requirements and to maximise the beneficial use of marine products and services. |
Impact | NEMO model configurations. NW European Shelf Operational Copernicus service. |
Start Year | 2008 |
Title | The Marine Model Optimization Testbed (MarMOT) 1.1 software http://noc.ac.uk/project/marmot/marmot-11-software |
Description | Overview document available at: http://nora.nerc.ac.uk/504004/ Types of beneficiary include: Research Council/Institute;Public Research Organisation |
Type Of Technology | Software |
URL | http://noc.ac.uk/project/marmot/marmot-11-software |
Title | Vertical Discretization In NEMO |
Description | |
Type Of Technology | Software |