Mechanistic Study of Light-Driven Molecular Motors

Lead Research Organisation: University of Bristol
Department Name: Chemistry

Abstract

Molecular rotary motors are examples of molecular machines activated by light and have potential applications in nanodevices and photoresponsive materials. Various light-driven molecular rotary motors will be synthesized using recently proposed and new designs, and the timescales of their rotation will be measured using ultrafast transient absorption spectroscopy. The transient spectroscopy will also reveal the motor efficiencies, and how these efficiencies and the rotor speeds depend on various properties of the solvent. The first motors that will be studied are based on overcrowded alkene oxindole designs. Measurements will examine the effects of changing solvent polarity and viscosity on the dynamics of the motors in their excited states and the consequences for the rotary isomerization yields. The derived information will be used to guide the design and synthesis of improved molecular motors and to exploit the rotary motion in novel chemical applications.

Planned Impact

1. PEOPLE: We will train students with skills that are in demand across a spectrum of industries from pharma/biotech to materials, as well as in academia, law and publishing. The enhanced experience they receive - through interactive brainstorming, problem and dragons' den type business sessions - will equip them with confidence in their own abilities and fast-track their leadership skills. 100% Employment of students from the previous CDT in Chemical Synthesis is indicative of the high demand for the skills we provide, but as start-ups and SMEs become increasingly important in the healthcare, medicine and energy sectors, training in IP, entrepreneurship and commercialisation will stimulate our students to explore their own ventures. Automation and machine learning are set to transform the workplace in the next 20 years, and our students will be in the vanguard of those primed to make best use of these shifts in work patterns. Our graduates will have an open and entrepreneurial mindset, willing to seek solution to problems that cross disciplines and require non-traditional approaches to scientific challenges.

2. ECONOMY: Built on the country's long history of scientific ingenuity and creativity, the >£50bn turnover and annual trade surplus of £5 bn makes the British chemical sector one of the most important creators of wealth for the national economy. Our proposal to integrate training in chemical synthesis with emerging fields such as automation/AI/ML will ensure that the UK maintains this position of economic strength in the face of rapidly developing competition. With the field of drug development desperately looking for innovative new directions, we will disseminate, through our proposed extensive industrial stakeholders, smarter and more efficient ways of designing and implementing molecular synthesis using automation, machine learning and virtual reality interfaces. This will give the UK the chance to take a world-leading position in establishing how molecules may be made more rapidly and economically, how compound libraries may be made broader in scope and accessed more efficiently, and how processes may be optimized more quickly and to a higher standard of resilience. Chemical science underpins an estimated 21% of the economy (>£25bn sales; 6 million people), so these innovations have the potential for far-reaching transformative impact.

3. SCIENCE: The science emerging from our CDT will continue to be at the highest academic level by international standards, as judged by an outstanding publication record. Incorporating automation, machine learning, and virtual reality into the standard toolkit of chemical synthesis would initiate a fundamental change in the way molecules are made. Automated methods for making limited classes of molecules (eg peptides) have transformed related biological fields, and extending those techniques to allow a wide range of small molecules to be synthesized will stimulate not only chemistry but also related pivotal fields in the bio- and materials sciences. Synthesis of the molecular starting points is often the rate-limiting step in innovation. Removing this hurdle will allow selection of molecules according to optimal function, not ease of synthesis, and will accelerate scientific progress in many sectors.

4. SOCIETY: Health benefits will emerge from the ability of both academia and the pharmaceutical industry to generate drug targets more rapidly and innovatively. Optimisation of processes opens the way for advances in energy efficiency and resource utilization by avoiding non-renewable, environmentally damaging, or economically volatile feedstocks. The societal impact of automation will extend more widely to the freeing of time to allow more creative working and also recreational pastimes. We thus aim to be among the pioneers in a new automation-led working model, and our students will be trained to think through the broader consequences of automation for society as a whole

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S024107/1 01/10/2019 31/03/2028
2275511 Studentship EP/S024107/1 01/10/2019 30/12/2023 Connah Harris
 
Description Joint CDT Conference in Data Driven Chemical Synthesis 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Professional Practitioners
Results and Impact I gave a presentation of my research to CDT students from Imperial College London, Bristol, Cambridge and Manchester. This lead to some great discussions about related work and opened conversations for future collaborative work.
Year(s) Of Engagement Activity 2021
 
Description TECS Summer Conference 2020 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Professional Practitioners
Results and Impact I gave a presentation on my research project to the TECS CDT cohorts, academics and visiting chemists from industry. The presentation lead to a very engaging discussion about ultrafast laser spectroscopy.
Year(s) Of Engagement Activity 2020
 
Description TECS Summer Conference 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Professional Practitioners
Results and Impact I gave a poster presentation of my research to the cohorts of the TECS CDT and academics from the University of Bristol. This lead to scientific discussions with academics that were unfamiliar with the spectroscopic techniques used in my research.
Year(s) Of Engagement Activity 2021