Modelling of High Performance OPVs with integrated storage

Lead Research Organisation: Durham University
Department Name: Engineering


Organic Photovoltaic diodes (OPVs) have been the subject of intense research for more than 20 years due to the possibility of cheap, scalable manufacture of a renewable energy source which is well-suited to small-scale generation. For much of that time, tweaks in molecular structure and processing yielded devices with non-viable efficiencies of 7% or less. However, recent step-changes in OPV efficiency to above 17% have been demonstrated for Tandem architectures (Meng et al., Science, 361, 1094 (2018)), suggesting that Tandem devices are the key to unlocking the potential of organic semiconductors for energy generation.

A roadblock in the development of Tandem OPVs is the lack of accurate device simulations to i) enable rational design of the complex multi-layer structure and ii) understand the key issues of Tandem OPVs separate to single junction OPVs. Tandem OPV development therefore relies upon trial-and-error optimisation and simplistic detailed-balance analyses. These simple models ignore the details of many aspects of Tandem OPV performance that have been shown to be important in single-junction devices, such as morphology dependence of geminate and non-geminate recombination, internal electric field distribution, and charge injection to name a few.

This project may also extend to consider modelling of integrated storage with OPV modules, focussing on the role materials selection has upon performance, and ultimately integrated system characteristics.


10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023836/1 01/04/2019 30/09/2027
2283365 Studentship EP/S023836/1 01/10/2019 30/09/2023 Cai Williams