Multiscale Simulations of Droplet-Membrane Mutual Remodelling

Lead Research Organisation: Durham University
Department Name: Chemistry

Abstract

Multiscale Simulations of Droplet-Membrane Mutual Remodelling
Phase separation is a familiar concept in the physical sciences, ranging from the common observation of water and oil demixing, to its use to create advanced materials for food, energy and photonic applications. In cellular biology, intracellular phase separation has garnered much attention recently as a means to organise intracellular solutions through the formation of droplet-like sub-compartments. Examples of such droplet compartments include the stress granules and P-bodies.

Key to this project is that these droplets interact with membranes, and as a result, the droplets and the membranes can mutually remodel their shapes and morphologies. For example, during autophagy, membrane sheets remodel into double-membrane organelles called autophagosomes. Autophagosomes can selectively isolate cargoes for elimination, including harmful cytosolic droplets. In fact, numerous physiological processes have been identified with similar membrane morphologies, suggesting that these droplet-membrane interactions are a general cellular mechanism.

The aim of this interdisciplinary project is to develop the much-needed understanding of these droplet-membrane interactions, and their mutual remodelling during droplet isolation. Here, we will use a multiscale modelling approach. At the molecular level, we will employ molecular dynamics simulations to study the formation of the droplets via a liquid-liquid phase separation mechanism and the affinity between the droplet and membrane. These results will inform a continuum modelling approach based on elasticity theory for studying the droplet and membrane shapes. The theoretical/computational work by the student will also provide an important framework to rationalise and guide ongoing in vitro and in vivo experiments. Our long-term goal is to provide new insights into processes inside cells exploiting this novel physical mechanism based on droplet-membrane interactions.

Planned Impact

The CDT has five primary beneficiaries:
The CDT cohort
Our students will receive an innovative training experience making them highly employable and equipping them with the necessary knowledge and skillset in science and enterprise to become future innovators and leaders. The potential for careers in the field is substantial and students graduating from the CDT will be sought after by employers. The Life Sciences Industrial strategy states that nearly half of businesses cite a shortage of graduates as an issue in their ability to recruit talent. Collectively, the industrial partners directly involved in the co-creation of the proposal have identified recruitment needs over the next decade that already significantly exceed the output of the CDT cohort.
Life science industries
The cohort will make a vital contribution to the UK life sciences industry, filling the skills gap in this vital part of the economy and providing a talented workforce, able to instantly focus on industry relevant challenges. Through co-creation, industrial partners have shaped the training of future employees. Additional experience in management and entrepreneurship, as well as peer-to-peer activities and the beginning of a professional network provided by the cohort programme will enable graduates to become future leaders. Through direct involvement in the CDT and an ongoing programme of dissemination, stakeholders will benefit from the research and continue to contribute to its evolution. Instrument manufacturers will gain new applications for their technologies, pharmaceutical and biotech companies will gain new opportunities for drug discovery projects through new insight into disease and new methods and techniques.
Health and Society
Research outputs will ultimately benefit healthcare providers and patients in relevant areas, such as cancer, ageing and infection. Pathways to such impact are provided by involvement of industrial partners specialising in translational research and enabling networks such as the Northern Health Science Alliance, the First for Pharma group and the NHS, who will all be partners. Moreover, graduates of the CDT will provide future healthcare solutions throughout their careers in pharmaceuticals, biotechnology, contract research industries and academia.
UK economy
The cohort will contribute to growth in the life sciences industry, providing innovations that will be the vehicle for economic growth. Nationally, the Life Sciences Industrial Strategy Health Advanced Research Programme seeks to create two entirely new industries in the field over the next ten years. Regionally, medicines research is a central tenet of the Northern Powerhouse Strategy. The CDT will create new opportunities for the local life sciences sector, Inspiration for these new industries will come from researchers with an insight into both molecular and life sciences as evidenced by notable successes in the recent past. For example, the advent of Antibody Drug Conjugates and Proteolysis Targeting Chimeras arose from interdisciplinary research in this area, predominantly in the USA and have led to significant wealth and job creation. Providing a cohort of insightful, innovative and entrepreneurial scientists will help to ensure the UK remains at the forefront of future developments, in line with the aim of the Industrial Strategy of building a country confident, outward looking and fit for the future.
Institutions
Both host institutions will benefit hugely from hosting the CDT. The enhancement to the research culture provided by the presence of a diverse and international cohort of talented students will be beneficial to all researchers allied to the theme areas of the programme, who will also benefit from attending many of the scientific and networking events. The programme will further strengthen the existing scientific and cultural links between Newcastle and Durham and will provide a vehicle for new collaborative research.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S022791/1 01/05/2019 31/10/2027
2448995 Studentship EP/S022791/1 01/10/2020 30/09/2024 Allen Drews