Molecular characterisation of plant disease resistance genes through novel Next-Generation Sequencing applications

Lead Research Organisation: University of Dundee
Department Name: School of Life Sciences

Abstract

This PhD project will provide comprehensive training for the successful candidate in potato genetics (diploid and tetraploid) as well as plant-pathogen genomics/co-evolution. The student will generate and analyse state-of-the-art Next Generation Sequencing (NGS) data for the genetic mapping and the cloning of resistances effective against the late blight pathogen Phytophthora infestans in established segregating populations. In addition, the student will characterise the mode-of-action of already isolated functional resistance genes and their variants through cell-biological assays including report genes, pull-downs, confocal imaging, and effector recognition.
The student will have the opportunity to develop NGS techniques with a focus on high-molecular DNA sequencing through Oxford Nanopore MinION.
The student will be a full member of the Dundee Effector Consortium (DEC), which unites more than 50 researchers on all aspects (including computational genetics/genomics) of plant-pathogen co-evolution. DEC will provide a forum to gain experience in communicating results in a friendly environment and receiving critical but constructive feedback on progress and direction of the PhD.
General Background: The data analyses will be focused on studying the interaction between Phytophthora infestans and potato. The oomycete pathogen P. infestans is a widespread and economically significant threat to global crop production. Phytophthora species are very destructive and can adapt rapidly to new selection pressures imposed by modern agriculture. On a molecular level pathogen avirulence or virulence to naturally occurring or deployed host disease resistances is determined by effectors. The effector recognition-based inducible plant defense response is often governed by nucleotide-binding, leucine-rich repeat (NLR) disease resistance proteins.
We have successfully developed target enrichment sequencing for potato NLRs as well as pathogen effectors from P. infestans that determine recognition in the plants and therefore resistance. We have coined these novel methods RenSeq [1-2] and PenSeq.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
BB/T00875X/1 30/09/2020 29/09/2028
2468574 Studentship BB/T00875X/1 04/10/2020 03/10/2024 Lynn Brown (Simpson)