Optimising the design and material interface of cervical collars used in emergency and rehabilitation settings.

Lead Research Organisation: University of Southampton
Department Name: Sch of Health Sciences

Abstract

Individuals who have experienced a serious trauma to the head or neck are routinely immobilized with a cervical collar (C-collar) until potential fractures or ligamentous injury are examined. C-collars are also used in the nonacute setting to manage cervical injury by providing biomechanical support to the head and neck during musculoskeletal rehabilitation. In order to limit mobility, collars are fixed securely to the neck via strapping and height adjustment, creating points of increased pressure often associated with shear forces at the skin-device interface. These pressure and shear forces can cause a high risk of skin breakdown and the development of pressure ulcers (PUs), also termed pressure injury. Common sites of skin breakdown specifically associated with C-collars include the occiput, mandible, ears, chin, laryngeal prominence, shoulders, and sternum. Prevalence values for collar-related tissue breakdown have been reported to range from 7%-38% and documented to be as high as 55% when worn for greater than 5 days. This risk of injury from wearing the collar is down to the generic designs incorporating stiff polymer materials. It is also due to the limited guidance on the application tension of the device.

Planned Impact

The CDT students will help create solutions for amputees and people with debilitating conditions such as stroke and diabetes, reducing mortality and enabling them to live more satisfying, productive and fulfilling lives. These solutions, co-created with industry and people living with disabilities, will have direct economic and societal benefits. The principal beneficiaries are industry, P&O service delivery, people who need P&O devices, and society in general.
Industry
The novel methods, devices and processes co-created with users and industry will have a direct economic value to our industry partners (by the creation of IP, new products, and improved industry and academic links). Our CDT graduates will be the natural potential employees of our industry partners and for companies in the wider healthcare technology sector. This will help address the identified critical skills need and shortage leading to improvement in the UK's competitiveness in this rapidly developing and growing global market. The CDT outcomes will help UK businesses spread risk (because new developments are well founded) and more confidently enter new markets with highly skilled employees (CDT graduates).

P&O service delivery
Doctoral engineering graduates with clinical knowledge are needed to improve the deployment of advanced technologies in practice. Our main UK industry partner, Blatchford, stated: "As technology develops it will become easier for the end-user (the patient), but the providers (the clinicians) are going to need to have a higher level of engineering training, ideally to PhD level". The British Association of Prosthetists and Orthotists estimates that no more than ten practising P&O clinicians have a PhD in the UK. Long-term P&O clinical academic leadership will be substantially improved by the CDT supporting a select number of clinically qualified P&O professionals to gain doctorates.

Users
The innovation of devices, use of device and patient monitoring, and innovation approaches in LMIC should not only lead to improved care but also lower healthcare costs. Diabetes UK estimates that the total healthcare expenditure related to foot ulceration and amputation in diabetes was £1billion (2014-15), with 2/3 of this related to foot ulceration. Small innovations could lead to large cost savings if targeted at the right aspects of care (e.g. earlier adoption, and reducing device abandonment).
An ability to work is fundamental to a person's place in society and their sense of purpose and has a significant societal impact in all territories. This is perhaps greatest in LMIC where attitudes towards disability may still be maturing, and appropriate social care infrastructure is not always in place. In these cases, an ability to work is essential for survival.
Improved design approaches will impact on all users regardless of context, since the device solutions will better match local and individual user needs. Addressing issues related to prosthetic/orthotic device abandonment (e.g. cosmesis) and improved adherence should also lead to greater social participation. Improved device solutions will shift focus from what users "cannot do" to what they now "can do", and help progress attitudes towards acceptance of disability.
Societal
The majority of the global P&O users are of working age, and a key economic impact will be keeping users in work. The average age at amputation due to diabetes is just 52 in the USA but much younger in countries with less well-developed health care and trauma services (e.g. 38 in Iran). Diabetes UK reports that 35-50% of people are of working age at diagnosis and that there are around 70,000 foot ulcers in the UK, precursors to amputation. There is a similar concern for stroke survivors around a quarter of whom are of working age and are 2-3 times more likely to be out of work after eight years.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S02249X/1 01/04/2019 30/09/2031
2609157 Studentship EP/S02249X/1 01/10/2021 30/09/2025 Laurence Russell