Advanced optical systems for terabit free-space communications

Lead Research Organisation: University of Glasgow
Department Name: College of Science and Engineering

Abstract

Next generation mobile communications networks, such as 6G will revolutionise the way we interact with technology, enabling super high-speed connections to our mobile devices. However, this places incredible strain on the backhaul and access networks that support 5G and beyond. Optical connections are the only viable solution for handling the terabits of data that will be generated by mobile users. Working with the world leading supplier in mobile access technology, this project will develop novel optical systems for supporting ultra-high capacity optical linkages over cable free inter mobile cell connections.
In this project, the student will develop a novel and efficient optical multiplexing technique for a form of space division multiplexing called orbital angular momentum (OAM) multiplexing. This form of information encoding puts a twist in the tale of propagating photons, and has potential to massively increase the capacity of communications channels. In the development of this sorter, the student will create new passive optical components based on transformation optical design, that can demultiplex information encoded in OAM with ultralow channel crosstalk. Free-form, metamaterial and diffractive optical systems will be explored. A further critical element of their novel optical designs, will be the support course wavelength division multiplexing (1270nmn to 1610nm), and will be integrated with bespoke adaptive optical solutions for mitigating atmospheric turbulence based on commercial deformable mirror technology. Supported by post-doctoral researchers these novel systems will be manufactured and tests in real-world communication systems.
These technologies will have direct application within the research field of optical communications, but will also provide new optical systems that could be used within remote sensing and imaging systems that operate over long-distances. Previously demultiplexers, developed by Dr Lavery, have been widely used globally by world-leading research groups in quantum optics, astronomy, environmental sensing, and optical metrology, where these advanced systems will be fully transferable into these research fields. The student will collaborate with fellow researchers in the Structure Photonics Research group to transition their systems for use in optical sensing and metrology experiments. Further, environment sensing using spatially shaped light has become a recent hot topic, where the advances made within this PhD project will have a considerable impact on this emerging field.

Planned Impact

Complementing our Pathways to Impact document, here we state the expected real-world impact, which is of course the leading priority for our industrial partners. Their confidence that the proposed CDT will deliver valuable scientific, engineering and commercial impact is emphasized by their overwhelming financial support (£4.38M from industry in the form of cash contributions, and further in-kind support of £5.56M).

Here we summarize what will be the impacts expected from the proposed CDT.

(1) Impact on People
(a) Students
The CDT will have its major impact on the students themselves, by providing them with new understanding, skills and abilities (technical, business, professional), and by enhancing their employability.
(b) The UK public
The engagement planned in the CDT will educate and inform the general public about the high quality science and engineering being pursued by researchers in the CDT, and will also contribute to raising the profile of this mode of doctoral training -- particularly important since the public have limited awareness of the mechanisms through which research scientists are trained.

(2) Impact on Knowledge
New scientific knowledge and engineering know-how will be generated by the CDT. Theses, conference / journal papers and patents will be published to disseminate this knowledge.

(3) Impact on UK industry and economy
UK companies will gain a competitive advantage by using know-how and new techniques generated by CDT researchers.
Companies will also gain from improved recruitment and retention of high quality staff.
Longer term economic impacts will be felt as increased turnover and profitability for companies, and perhaps other impacts such as the generation / segmentation of new markets, and companies receiving inward investment for new products.

(4) Impact on Society
Photonic imaging, sensing and related devices and analytical techniques underpin many of products and services that UK industry markets either to consumers or to other businesses. Reskilling of the workforce with an emphasis on promoting technical leadership is central to EPSRC's Productive Nation prosperity outcome, and our CDT will achieve exactly this through its development of future industrially engaged scientists, engineers and innovators. The impact that these individuals will have on society will be manifested through their contribution to the creation of new products and services that improve the quality of life in sectors like transport, dependable energy networks, security and communications.

Greater internationalisation of the cohort of CDT researchers is expected from some of the CDT activities (e.g. international summer schools), with the potential impact of greater collaboration in the future between the next generations of UK and international researchers.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S022821/1 01/10/2019 31/03/2028
2751388 Studentship EP/S022821/1 05/09/2022 04/09/2026 Kuo Wang