📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

Controlling the Emotion of Music using Generative Deep Learning

Lead Research Organisation: University of Manchester
Department Name: Computer Science

Abstract

This research project aims to develop novel, knowledge-based deep learning techniques for emotional music generation. The primary objectives are: (1) To explore effective methods for converting 'vanilla' melodies into ones that express a specific emotional state, and (2) To identify which technique among statistical analysis, training neural networks, music information retrieval (MIR), or music theory offers the best emotion control over generated melodies.

The approach will involve resampling a melody, generated by an existing model, note-by-note, to reflect the chosen emotion. The effectiveness of each technique will be empirically evaluated using small datasets of symbolic music. A prototype will be created to allow users to either generate a new melody with a specified emotion or convert an existing melody to the chosen emotional state.

This project holds novelty in applying knowledge-enhanced deep learning methods to music composition for emotion representation. Its contributions will expand the knowledge in knowledge-based deep learning techniques and underscore the intersection of engineering, physical sciences, and musicology.

People

ORCID iD

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/T517823/1 30/09/2020 29/09/2025
2857056 Studentship EP/T517823/1 30/09/2021 30/03/2025