DIRAC-3 Operations 2019-22 - UCL
Lead Research Organisation:
UNIVERSITY COLLEGE LONDON
Department Name: Physics and Astronomy
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Planned Impact
The DiRAC-3 Facility strategy for impact and innovation delivery is well-aligned with the UK government Industrial Strategy. As such, much of our societal and economic impact will continue to be driven by our engagements with industry. Each DiRAC-3 service provider has a local industrial strategy to deliver continued high levels of industrial engagement and to explore avenues to increase innovation and industrial returns over the next three years. Progress towards the industrial strategy goals will be monitored by the Service Management Boards and the DiRAC Technical Manager and reported to STFC via the DiRAC Oversight Committee.
The "Pathways to Impact" document attached to the lead JeS form for this proposal describes the overall DiRAC-3 industrial strategy, including our strategic goals and key performance indicators.
Examples of the expected impact of DiRAC-3 include:
1) Dissemination of best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.
2) Training of the next generation of research scientists to tackle problems effectively on state-of-the- art of High Performance Computing facilities. Such skills are much in demand from high-tech industry and the cadre of highly-skilled, computationally literate individuals nurtured by DiRAC-3 will have influence beyond academia and will help to maintain the UK's scientific and economic leadership.
3) Development and delivery of co-design projects with industry partners to improve future generations of hardware and software.
4) Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use these developments to improve research outcomes in their areas.
5) Sharing of best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners and providing leadership towards an integrated UKRI National e-Infrastructure. By supporting the uptake of emerging technologies by the DiRAC research communities, we will enable other research communities, both in academia and industry, to explore the value of using leading-edge technology to support their research workflows.
6) Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.
The "Pathways to Impact" document attached to the lead JeS form for this proposal describes the overall DiRAC-3 industrial strategy, including our strategic goals and key performance indicators.
Examples of the expected impact of DiRAC-3 include:
1) Dissemination of best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.
2) Training of the next generation of research scientists to tackle problems effectively on state-of-the- art of High Performance Computing facilities. Such skills are much in demand from high-tech industry and the cadre of highly-skilled, computationally literate individuals nurtured by DiRAC-3 will have influence beyond academia and will help to maintain the UK's scientific and economic leadership.
3) Development and delivery of co-design projects with industry partners to improve future generations of hardware and software.
4) Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use these developments to improve research outcomes in their areas.
5) Sharing of best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners and providing leadership towards an integrated UKRI National e-Infrastructure. By supporting the uptake of emerging technologies by the DiRAC research communities, we will enable other research communities, both in academia and industry, to explore the value of using leading-edge technology to support their research workflows.
6) Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.
Organisations
Publications
Smith A
(2019)
Correcting for fibre assignment incompleteness in the DESI Bright Galaxy Survey
in Monthly Notices of the Royal Astronomical Society
Nealon R
(2019)
Flyby-induced misalignments in planet-hosting discs
in Monthly Notices of the Royal Astronomical Society
Amarantidis S
(2019)
The first supermassive black holes: indications from models for future observations
in Monthly Notices of the Royal Astronomical Society
Sormani M
(2019)
The geometry of the gas surrounding the Central Molecular Zone: on the origin of localized molecular clouds with extreme velocity dispersions
in Monthly Notices of the Royal Astronomical Society
Young R
(2019)
Simulating Jupiter's weather layer. Part I: Jet spin-up in a dry atmosphere
in Icarus
Gration A
(2019)
Dynamical modelling of dwarf spheroidal galaxies using Gaussian-process emulation
in Monthly Notices of the Royal Astronomical Society
Bourne M
(2019)
AGN jet feedback on a moving mesh: lobe energetics and X-ray properties in a realistic cluster environment
in Monthly Notices of the Royal Astronomical Society
Sperhake U
(2019)
High-energy collision of black holes in higher dimensions
in Physical Review D
Bantilan H
(2019)
End point of nonaxisymmetric black hole instabilities in higher dimensions
in Physical Review D
| Description | Many new discoveries about the formation and evolution of galaxies, star formation, planet formation and particle physics theory have been made possible by the award. |
| Exploitation Route | Many international collaborative projects are supported by the HPC resources provided by DiRAC |
| Sectors | Aerospace Defence and Marine Creative Economy Digital/Communication/Information Technologies (including Software) Education Healthcare |
| URL | http://www.dirac.ac.uk |
| Description | Many new discoveries about the formation and evolution of galaxies, star formation, planet formation and particle physics theory have been made possible by the award. |
| Sector | Aerospace, Defence and Marine,Creative Economy,Digital/Communication/Information Technologies (including Software),Education,Healthcare |
