Experimental Particle Physics Rolling Grant 2006-2011
Lead Research Organisation:
Lancaster University
Department Name: Physics
Abstract
This research is aimed at understanding the properties of the basic building blocks of the Universe (the elementary particles) and the nature of the fundamental forces which govern the interactions of these particles. In so doing, deep insights will be gained about the origin and evolution of the Universe, especially in the first moments after the Big Bang. The Lancaster research programme covers all the main types of accelerator facilities and is based on hadron collider physics with the Tevatron (Fermilab) and LHC (CERN) machines, the observation of long baseline neutrino oscillations in Japan and, in the longer term future, high energy electron-positron collisions at the International Linear Collider (ILC). All of this work will be underpinned by Lancaster's expertise in characterising and understanding the properties of heavily irradiated silicon particle detectors, in operating high performance computing facilities on the Grid and in writing offline event reconstruction software. The hadron collider physics is expected to reveal detailed properties of B hadrons (containing heavy b-quarks) including the mixing of neutral B mesons containing strange quarks, and CP violation which is related to the existence of the matter-antimatter asymmetry in the Universe. Searches for new physics at the LHC will focus on understanding the origin of mass (and the role of the Higgs boson), the existence of new symmetries of nature (e.g. supersymmetry) and extra spatial dimensions. The neutrino oscillations programme is expected to provide important information about the masses of and the amount of mixing amongst the three known species of neutrinos. If the appearance of electron neutrinos can be observed in a muon neutrino beam then it may be possible, in a further phase of the research, to establish the existence of CP violation in the neutrino sector of the Standard Model. This could have wide reaching implications for the understanding of the matter-antimatter asymmetry of the Universe. The electron-positron collider (the ILC) will enable a continuation of some of the research performed at the LHC but with a facility of greater precision and versatility. It could be especially crucial for the elucidation of the properties of the Higgs boson and supersymmetry if they exist as well as being an abundant source of top quraks.
Organisations
Publications
Aad G
(2014)
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s = 8 $$ \sqrt{s}=8 $$ TeV with ATLAS
in Journal of High Energy Physics
Aad G
(2011)
Measurement of the transverse momentum distribution of Z / ? ? bosons in proton-proton collisions at s = 7 TeV with the ATLAS detector
in Physics Letters B
Aad G
(2014)
Search for Higgs boson decays to a photon and a Z boson in pp collisions at s = 7 and 8 TeV with the ATLAS detector
in Physics Letters B
Aad G
(2011)
Search for heavy long-lived charged particles with the ATLAS detector in pp collisions at s = 7 TeV
in Physics Letters B
Aad G
(2014)
Search for the lepton flavor violating decay Z ? e µ in p p collisions at s = 8 TeV with the ATLAS detector
in Physical Review D
Aad G
(2011)
Search for supersymmetric particles in events with lepton pairs and large missing transverse momentum in $\sqrt{s}=7~\mbox{TeV}$ proton-proton collisions with the ATLAS experiment
in The European Physical Journal C
Aad G
(2014)
Measurement of the underlying event in jet events from 7 $$\text {TeV}$$ TeV proton-proton collisions with the ATLAS detector
in The European Physical Journal C
Aad G
(2014)
Search for WZ resonances in the fully leptonic channel using pp collisions at s = 8 TeV with the ATLAS detector
in Physics Letters B
Aad G
(2014)
Measurement of the top quark pair production charge asymmetry in proton-proton collisions at $ \sqrt{s} $ = 7 TeV using the ATLAS detector
in Journal of High Energy Physics
Aad G
(2014)
Search for microscopic black holes and string balls in final states with leptons and jets with the ATLAS detector at s $$ \sqrt{s} $$ = 8 TeV
in Journal of High Energy Physics
Aad G
(2013)
Search for long-lived stopped R -hadrons decaying out of time with p p collisions using the ATLAS detector
in Physical Review D
Aad G
(2014)
Study of heavy-flavor quarks produced in association with top-quark pairs at s = 7 TeV using the ATLAS detector
in Physical Review D
Aad G
(2013)
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
in The European Physical Journal C
Aad G
(2010)
Performance of the ATLAS detector using first collision data
in Journal of High Energy Physics
Aad G
(2011)
Measurement of the W+ W- cross section in sqrt(s) = 7 TeV pp collisions with ATLAS.
in Physical review letters
Aad G
(2014)
Search for supersymmetry in events with four or more leptons in s = 8 TeV p p collisions with the ATLAS detector
in Physical Review D
Aad G
(2014)
Measurement of the production cross section of prompt J/? mesons in association with a W ± boson in pp collisions at $ \sqrt{s} $ = 7 TeV with the ATLAS detector
in Journal of High Energy Physics
Aad G
(2014)
Measurement of the mass difference between top and anti-top quarks in pp collisions at s = 7 TeV using the ATLAS detector
in Physics Letters B
Aad G
(2013)
Search for new phenomena in events with three charged leptons at s = 7 TeV with the ATLAS detector
in Physical Review D
