DIRAC-3 Operations 2019-22 - UCL
Lead Research Organisation:
UNIVERSITY COLLEGE LONDON
Department Name: Physics and Astronomy
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Planned Impact
The DiRAC-3 Facility strategy for impact and innovation delivery is well-aligned with the UK government Industrial Strategy. As such, much of our societal and economic impact will continue to be driven by our engagements with industry. Each DiRAC-3 service provider has a local industrial strategy to deliver continued high levels of industrial engagement and to explore avenues to increase innovation and industrial returns over the next three years. Progress towards the industrial strategy goals will be monitored by the Service Management Boards and the DiRAC Technical Manager and reported to STFC via the DiRAC Oversight Committee.
The "Pathways to Impact" document attached to the lead JeS form for this proposal describes the overall DiRAC-3 industrial strategy, including our strategic goals and key performance indicators.
Examples of the expected impact of DiRAC-3 include:
1) Dissemination of best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.
2) Training of the next generation of research scientists to tackle problems effectively on state-of-the- art of High Performance Computing facilities. Such skills are much in demand from high-tech industry and the cadre of highly-skilled, computationally literate individuals nurtured by DiRAC-3 will have influence beyond academia and will help to maintain the UK's scientific and economic leadership.
3) Development and delivery of co-design projects with industry partners to improve future generations of hardware and software.
4) Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use these developments to improve research outcomes in their areas.
5) Sharing of best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners and providing leadership towards an integrated UKRI National e-Infrastructure. By supporting the uptake of emerging technologies by the DiRAC research communities, we will enable other research communities, both in academia and industry, to explore the value of using leading-edge technology to support their research workflows.
6) Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.
The "Pathways to Impact" document attached to the lead JeS form for this proposal describes the overall DiRAC-3 industrial strategy, including our strategic goals and key performance indicators.
Examples of the expected impact of DiRAC-3 include:
1) Dissemination of best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.
2) Training of the next generation of research scientists to tackle problems effectively on state-of-the- art of High Performance Computing facilities. Such skills are much in demand from high-tech industry and the cadre of highly-skilled, computationally literate individuals nurtured by DiRAC-3 will have influence beyond academia and will help to maintain the UK's scientific and economic leadership.
3) Development and delivery of co-design projects with industry partners to improve future generations of hardware and software.
4) Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use these developments to improve research outcomes in their areas.
5) Sharing of best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners and providing leadership towards an integrated UKRI National e-Infrastructure. By supporting the uptake of emerging technologies by the DiRAC research communities, we will enable other research communities, both in academia and industry, to explore the value of using leading-edge technology to support their research workflows.
6) Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.
Organisations
Publications
Barnes D
(2021)
Characterizing hydrostatic mass bias with mock-X
in Monthly Notices of the Royal Astronomical Society
Barone A
(2023)
Approaches to inclusive semileptonic B(s)-meson decays from Lattice QCD
in Journal of High Energy Physics
Barone T
(2024)
Gravitational lensing reveals cool gas within 10-20 kpc around a quiescent galaxy
in Communications Physics
Barrera M
(2023)
The MillenniumTNG Project: semi-analytic galaxy formation models on the past lightcone
in Monthly Notices of the Royal Astronomical Society
Barrera-Hinojosa C
(2020)
GRAMSES: a new route to general relativistic N -body simulations in cosmology. Part I. Methodology and code description
in Journal of Cosmology and Astroparticle Physics
Barrera-Hinojosa C
(2021)
Vector modes in ?CDM: the gravitomagnetic potential in dark matter haloes from relativistic N -body simulations
in Monthly Notices of the Royal Astronomical Society
Barrera-Hinojosa C
(2022)
Looking for a twist: probing the cosmological gravitomagnetic effect via weak lensing-kSZ cross-correlations
in Monthly Notices of the Royal Astronomical Society
Barrera-Hinojosa C
(2020)
GRAMSES: a new route to general relativistic N -body simulations in cosmology. Part II. Initial conditions
in Journal of Cosmology and Astroparticle Physics
Bartlett D
(2021)
Constraints on Galileons from the positions of supermassive black holes
in Physical Review D
Bartlett D
(2021)
Calibrating galaxy formation effects in galactic tests of fundamental physics
in Physical Review D
Bartlett D
(2021)
Spatially offset black holes in the Horizon-AGN simulation and comparison to observations
in Monthly Notices of the Royal Astronomical Society
Bartlett-Tisdall S
(2024)
Bootstrapping boundary QED. Part I
in Journal of High Energy Physics
Bastian N
(2020)
The globular cluster system mass-halo mass relation in the E-MOSAICS simulations
in Monthly Notices of the Royal Astronomical Society
Bate M
(2023)
The statistical properties of stars at redshift, z = 5, compared with the present epoch
in Monthly Notices of the Royal Astronomical Society
Bate M
(2020)
Photoionizing feedback in spiral arm molecular clouds
in Monthly Notices of the Royal Astronomical Society
Bate M
(2019)
The statistical properties of stars and their dependence on metallicity
in Monthly Notices of the Royal Astronomical Society
Batelaan M
(2023)
Moments and power corrections of longitudinal and transverse proton structure functions from lattice QCD
in Physical Review D
Batelaan M
(2023)
Feynman-Hellmann approach to transition matrix elements and quasidegenerate energy states
in Physical Review D
Battino U
(2019)
NuGrid stellar data set - III. Updated low-mass AGB models and s-process nucleosynthesis with metallicities Z= 0.01, Z = 0.02, and Z = 0.03
in Monthly Notices of the Royal Astronomical Society
Baugh C
(2019)
Galaxy formation in the Planck Millennium: the atomic hydrogen content of dark matter haloes
in Monthly Notices of the Royal Astronomical Society
Baugh C
(2020)
Sensitivity analysis of a galaxy formation model
in Monthly Notices of the Royal Astronomical Society
Baugh C
(2022)
Modelling emission lines in star-forming galaxies
in Monthly Notices of the Royal Astronomical Society
Baxter E
(2021)
The correlation of high-redshift galaxies with the thermal Sunyaev-Zel'dovich effect traces reionization
in Monthly Notices of the Royal Astronomical Society
Bazavov A
(2023)
Light-quark connected intermediate-window contributions to the muon g - 2 hadronic vacuum polarization from lattice QCD
in Physical Review D
Beane S
(2021)
Charged multihadron systems in lattice QCD + QED
in Physical Review D
| Description | Many new discoveries about the formation and evolution of galaxies, star formation, planet formation and particle physics theory have been made possible by the award. |
| Exploitation Route | Many international collaborative projects are supported by the HPC resources provided by DiRAC |
| Sectors | Aerospace Defence and Marine Creative Economy Digital/Communication/Information Technologies (including Software) Education Healthcare |
| URL | http://www.dirac.ac.uk |
| Description | Many new discoveries about the formation and evolution of galaxies, star formation, planet formation and particle physics theory have been made possible by the award. |
| Sector | Aerospace, Defence and Marine,Creative Economy,Digital/Communication/Information Technologies (including Software),Education,Healthcare |
