Experimental Particle Physics Rolling Grant 2006-2011
Lead Research Organisation:
Lancaster University
Department Name: Physics
Abstract
This research is aimed at understanding the properties of the basic building blocks of the Universe (the elementary particles) and the nature of the fundamental forces which govern the interactions of these particles. In so doing, deep insights will be gained about the origin and evolution of the Universe, especially in the first moments after the Big Bang. The Lancaster research programme covers all the main types of accelerator facilities and is based on hadron collider physics with the Tevatron (Fermilab) and LHC (CERN) machines, the observation of long baseline neutrino oscillations in Japan and, in the longer term future, high energy electron-positron collisions at the International Linear Collider (ILC). All of this work will be underpinned by Lancaster's expertise in characterising and understanding the properties of heavily irradiated silicon particle detectors, in operating high performance computing facilities on the Grid and in writing offline event reconstruction software. The hadron collider physics is expected to reveal detailed properties of B hadrons (containing heavy b-quarks) including the mixing of neutral B mesons containing strange quarks, and CP violation which is related to the existence of the matter-antimatter asymmetry in the Universe. Searches for new physics at the LHC will focus on understanding the origin of mass (and the role of the Higgs boson), the existence of new symmetries of nature (e.g. supersymmetry) and extra spatial dimensions. The neutrino oscillations programme is expected to provide important information about the masses of and the amount of mixing amongst the three known species of neutrinos. If the appearance of electron neutrinos can be observed in a muon neutrino beam then it may be possible, in a further phase of the research, to establish the existence of CP violation in the neutrino sector of the Standard Model. This could have wide reaching implications for the understanding of the matter-antimatter asymmetry of the Universe. The electron-positron collider (the ILC) will enable a continuation of some of the research performed at the LHC but with a facility of greater precision and versatility. It could be especially crucial for the elucidation of the properties of the Higgs boson and supersymmetry if they exist as well as being an abundant source of top quraks.
Organisations
Publications
Abazov V
(2008)
Measurement of the muon charge asymmetry from W boson decays
in Physical Review D
Abazov V
(2013)
Measurement of the differential cross sections for isolated direct photon pair production in p p ¯ collisions at s = 1.96 TeV
in Physics Letters B
Abazov V
(2013)
Search for the standard model Higgs boson in l ? + jets final states in 9.7 fb - 1 of p p ¯ collisions with the D0 detector
in Physical Review D
Abazov V
(2007)
Measurement of the top quark mass in the lepton+jets channel using the ideogram method
in Physical Review D
Abazov V
(2012)
Search for a narrow t t ¯ resonance in p p ¯ collisions at s = 1.96 TeV
in Physical Review D
Abazov V
(2011)
Measurement of the W boson helicity in top quark decays using 5.4 fb - 1 of p p ¯ collision data
in Physical Review D
Abazov V
(2013)
Measurement of the ratio of three-jet to two-jet cross sections in p p ¯ collisions at s = 1.96 TeV
in Physics Letters B
Abazov V
(2009)
Search for admixture of scalar top quarks in the t t ¯ lepton + jets final state at s = 1.96 TeV
in Physics Letters B
Abazov V
(2013)
Measurement of the ratio of differential cross sections s ( p p ¯ ? Z + b jet ) / s ( p p ¯ ? Z + jet ) in p p ¯ collisions at s = 1.96 TeV
in Physical Review D
Abazov V
(2013)
Measurement of leptonic asymmetries and top-quark polarization in t t ¯ production
in Physical Review D
Abazov V
(2008)
Search for scalar leptoquarks and T-odd quarks in the acoplanar jet topology using of collision data at
in Physics Letters B
Abazov V
(2010)
Measurement of t t ¯ production in the t + jets topology using p p ¯ collisions at s = 1.96 TeV
in Physical Review D
Abazov V
(2011)
Measurements of single top quark production cross sections and | V t b | in p p ¯ collisions at s = 1.96 TeV
in Physical Review D
Abazov V
(2012)
Search for Higgs boson production in oppositely charged dilepton and missing energy events in p p ¯ collisions at s = 1.96 TeV
in Physical Review D
Abazov V
(2009)
Search for a scalar or vector particle decaying into Z? in p p ¯ collisions at s = 1.96 TeV
in Physics Letters B
Abazov V
(2007)
Measurement of the t t ¯ production cross section in p p ¯ collisions using dilepton events
in Physical Review D
Abazov V
(2008)
Erratum: Measurement of s ( p p ¯ ? Z ) · Br ( Z ? t t ) at s = 1.96 TeV [Phys. Rev. D 71 , 072004 (2005)]
in Physical Review D
Abazov V
(2007)
Search for B s 0 ? µ + µ - decays at D0
in Physical Review D
Abazov V
(2013)
Search for Higgs boson production in trilepton and like-charge electron-muon final states with the D0 detector
in Physical Review D
Abazov V
(2008)
Measurement of the differential cross section for the production of an isolated photon with associated jet in p p ¯ collisions at s = 1.96 TeV
in Physics Letters B
Abazov V
(2010)
Measurement of Z / ? * + jet + X angular distributions in p p ¯ collisions at s = 1.96 TeV
in Physics Letters B
Abazov V
(2012)
Search for the standard model Higgs boson in the Z H ? ? ? ¯ b b ¯ channel in 9.5 fb-1 of p p ¯ collisions at s = 1.96 TeV
in Physics Letters B
Abazov V
(2013)
Search for Z H ? l + l - b b ¯ production in 9.7 fb - 1 of p p ¯ collisions with the D0 detector
in Physical Review D
Abazov V
(2011)
Model-independent measurement of t-channel single top quark production in p p ¯ collisions at s = 1.96 TeV
in Physics Letters B
