Mayflower - The Feasibility Study

Lead Participant: UNIPER TECHNOLOGIES LIMITED

Abstract

The project is a collaboration between Associated British Ports (ABP), Siemens Energy UK (SEU), Toyota Tsusho UK (TTUK), Uniper Technologies UK (UTL) and Uniper Hydrogen UK (UHU), to realise the potential of a green hydrogen supply to the Port of Immingham (PoI) for greenhouse gas (GHG) reduction of port operations and shipping.

Thereby, a solution for GHG reduction is targeted, that is both scalable within the PoI and replicable in other ports around the UK and internationally.

The PoI, located in the Humber Industrial Cluster, is the UK's largest port by tonnage, handling over 54Mt of cargo annually. For the energy transition, the port has taken steps to electrify some small port equipment. However, electrification is not (technically/economically) viable for all operations and the sector continues to rely on fossil fuels. Hydrogen and its derivatives, such as ammonia, are credible and exciting alternatives to fossil fuels, promising carbon neutral processes in the sector. However, a lack of secure and affordable hydrogen supply within ports means conversion to low emission hydrogen-based fuels is not currently a bankable solution.

The study will assess the technical and economic feasibility of a green hydrogen supply to the PoI, incorporating the full hydrogen value chain from production by electrolysis, storage and transport, to direct end use and ammonia conversion. The project will explore the potential of hydrogen fuel cell port equipment such as cranes, reach stackers, yard tractors etc., and ammonia production for clean shipping fuel.

If deployed, it would be the first of a kind. The study will build on the results of a 6 month "discovery phase", that assessed options for decarbonisation of operations in and around the PoI and developed a roadmap for delivery. This developed the concept to supply, in an initial phase, c.20MW of green hydrogen to the PoI. The feasibility study will determine the most economic location for siting the electrolyser; Uniper's Killingholme site or a suitable location within the PoI (both locations were identified to be attractive options during the discovery phase).To prove this concept and prepare for deployment, the feasibility study of the innovative concept is required. Besides detailed information of the components and the concept itself, the study will reveal additional opportunities and risks.

The results will be of significant benefit for the decarbonisation of the maritime sector and will enable further commitment to the delivery of such a solution at the PoI by all parties.

Publications

10 25 50