Hy-MAP 2.0 - Hydrogen mapping in hydrogen storage materials

Lead Participant: H2GO POWER LTD

Abstract

The growing environmental challenges have made decarbonisation a global priority. Renewable energy is key for decarbonisation, but their broad deployment requires **sufficient energy storage technologies** to balance the mismatch of intermittent renewable supply with electricity demand. Towards this goal, hydrogen has been rightfully acknowledged as a highly suitable renewable energy carrier.

Hydrogen is **notoriously difficult to store**, as conventional storage methods require extreme conditions (e.g. high pressures or low temperatures). At H2GO we have **developed and deployed** a solid-state hydrogen storage technology that is a **safer, cheaper and denser alternative** to conventional storage technologies. Our technology exploits the reversible chemical bond that hydrogen forms with other molecules, allowing for storing and releasing hydrogen in cycles to be carried out **several thousand times**.

However, while applying these cycles in our patented storage technology, we observed an **oxidation effect** when our storage materials are **exposed to oxygen and water molecules** (e.g. moisture present in air) which can affect their performance and lifetime. As we scale up production, our manual reactor filling process **needs to be upgraded to an automated process** while **mitigating any oxidation effects** during filling. Thus understanding the exact effects of oxidation and when they are most likely to occur will allow a targeted process for filling our reactors, in turn making our product more efficient and competitive.

Using the National Physical Laboratory (NPL) state-of-art facilities and expertise in preparing reference gases, we will carry out **a detailed investigation of these oxidation effects** for our storage materials, providing valuable information on the most suitable automatic filling process to adopt.

We will be using nano-SIMS (Secondary Ions Mass Spectrometry), to define the effects and extent of oxidation caused by a set of specially prepared reference gases. SIMS is **one of the rare techniques that can map the distribution of hydrogen and oxygen isotopes**, at 100 nm spatial resolution. We will use this method to **examine the relation of our hydrogen storage materials with oxygen and water molecules** together with the effects that they may bring to our materials.

There are **few laboratories globally** that have these capabilities and expertise **all under one roof**, and thus NPL is well positioned to undertake these measurement challenges.

Lead Participant

Project Cost

Grant Offer

H2GO POWER LTD £14,676 £ 14,676
 

Participant

NPL MANAGEMENT LIMITED £32,689

Publications

10 25 50