Molecular Analysis of Surface Functionalization of Nanomaterials

Lead Participant: HEXAGONFAB LIMITED

Abstract

The influenza burden
Each year more than 800'000 people in the UK see their GP for suspected influenza infection and 20'000-30'000 people are admitted to hospitals. Hospitals face the daily risk that incoming patients (110,000 annually in the Emergency Room in Addenbrooke's Hospital in Cambridge 2017/2018) will lead to Influenza outbreaks in the hospital. Indeed, there were more 2200 confirmed influenza outbreaks in the UK last year in hospitals, care homes, and schools.

To prevent outbreaks, patients must be tested for influenza before antiviral treatment is initiated. Unfortunately, this testing process can take several hours, resulting in delayed diagnosis and treatment. The current established and trusted "gold standard" method of testing for influenza in hospitals can take up to 12 hours. A delay of half a day is highly costly to the patient and hospital: patients must wait longer to be seen by the correct department, wards become congested with patients waiting for test results and the risk of viral outbreaks increases as potential carriers of the virus wait for results.

Clinicians have expressed a need for rapid influenza detection tests that can be carried out by non-medically trained personnell in the Emergency Room. A selection of currently existing rapid diagnostic tests (RDTs) has been tried. The sensitivity of most have been shown to be insufficient, thus often resulting in false negatives. There is an urgent need for a novel rapid diagnostic test for influenza virus that can be used in hospital emergency rooms.

What can be done
At HexagonFab, a biosensor has been developed and built from novel nanomaterials, which will bring the sensitivity of laboratory based tests to the emergency room. The technology gains its outstanding sensitivity through the unique surface of the nanomaterial, which is the core sensing element. In order to improve the sensor, it is necessary to investigate in detail how the nanomaterial interacts with its environment and how it can be tailored to be even more sensitive and specific. This continued InnovateUK A4I project brings the unique expertise of NPL, one of the leading research organisations of the UK, to investigate the surface of the nanomaterial and how the sensor can be optimised to achieve the sensitivity of current laboratory-based tests, while allowing use at the patient in the emergency room.

Lead Participant

Project Cost

Grant Offer

HEXAGONFAB LIMITED £110,505 £ 77,353
 

Participant

TUV SUD LIMITED
NPL MANAGEMENT LIMITED £30,570
NPL MANAGEMENT LIMITED

Publications

10 25 50