📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

Self-regulated asynchronous cogeneration to enable micro-scale waste-to-energy biogas utilisation

Abstract

Methane-rich biogas produced as a waste-to-energy (WTE) by-product of organic effluent
treatment in anaerobic digesters and microbial fuel cells has potential to generate 30TWh of
electricity. Yet, whilst combined heat/power units (CHP) based on dedicated industrial biogas
engines currently recover energy from large-scale WTE and cogeneration (CG) technologies
(250KWhe), the current size is not compatible with the waste/energy requirements of most
potential users, meaning that only 1.6% of the available feedstock is being utilised.
Micro-scale WTE technologies – which are uniquely aligned with these requirements – are
therefore predicted to dominate the market through widespread public and industrial
application. However, despite uptake of micro-AD/MFC growing rapidly, there is no
commercial technology for biogas micro-CG due to a fundamental restriction on scalability of
synchronous generator costs with reducing CHP size.
Lindhurst Innovation Engineering aim to realise an enabling technology for a turn-key biogas
micro-CHP, by instead proving the technical feasibility of self-regulated asynchronous
generation, allowing key expensive components for synchronisation to be omitted. Based on a
novel framework for high power factor grid-linked induction, a dedicated micro-scale biogas
engine and integrated scrubbing, the project targets a step change in engine
displacement/electrical generation capacity, system complexity, cost, noise and maintenance.

Lead Participant

Project Cost

Grant Offer

LINDHURST ENGINEERING LIMITED £188,829 £ 100,000

People

ORCID iD

Publications

10 25 50