TET protein function in conversion of 5mC to 5hmC during cell cycle entry

Lead Research Organisation: King's College London
Department Name: Haematology

Abstract

Parts of the DNA of human cells known as genes are copied (the copy is called an mRNA) by a process known as transcription, also known as gene expression. The sequence of each mRNA provides the blueprint for an individual protein. Eeach mRNA is "read" by the cell to produce many copies of each protein that then alter what the cell can do in the body. We are studying a type of cell in the blood called a T cell that helps to fight infection and changing the mRNAs that are expressed in T cells affects how it does this.

The DNA is in the nucleus of the cell and it is about 3 metres long. It is bound by proteins called histones. The histones wrap and twist the DNA to compact it 10,000-times so it fits into the middle of the cell, called the nucleus. The position of these histones also controls how genes are transcribed into mRNA. Some cells in the body, such as stem cells and T cells are in a resting state called quiescence. It is important to keep these cells quiescent until the body signals them to divide and become activated. We showed that there is a regulatory point, called the commitment point and T cells have to be stimulated past this control point in order to become committed to proliferate. When these quiescent cells are stimulated a large number of genes are induced, which is critical for ensuring that cell proliferation and activation occur correctly. We have evidence that a modification to the DNA, called 5hmC occurs when the T cells start to proliferate and we think this may occur because proteins called "TET" are induced. We know that the 5hmC modification determines whether some genes can be transcribed or not. This project will investigate our hypothesis that formation of 5hmC by TET as T cells start to proliferate is important in regulating the transcription of some genes. This is important as we believe that this will be a new mechanism that regulates a very important cell of our immune system.

Technical Summary

Regulation of the transition from G0 into the cell cycle is critical for maintaining normal haemopoiesis and the correct functioning of the immune system(1). Cell cycle entry is accompanied by significant increases in the expression of a large number of genes. Recently we investigated epigenetic changes in T cells during G0->G1; nucleosome positioning, DNA methylation & histone modifications, which were mapped to repressed, expressed and inducible genes on Chr 1 & 6(2). We have now investigated the distribution of hydroxy-methylcytosine (5hmC) in quiescent vs CD3/CD28-stimulated T cells and observed a significant increase in levels of 5hmC as the cells entered the first cell cycle. Quantitative PCR analysis of TET family members showed downregulation of TET1 and upregulation of TET2 and TET3 mRNAs as cells progressed from G0 to G1. The implication of these results is that there is a normal cell cycle dependent conversion of 5mC to 5hmC mediated by TET family(3) of proteins to regulate the expression of genes during entry into the first cell cycle from quiescence.

This application will test the hypotheses that:
I Specific TET proteins regulate the conversion of 5mC to 5hmC as quiescent cells progress into the cell cycle from quiescence and that
II Conversion of 5mC to 5hmC by TET proteins is required at specific sites to regulate cell cycle-dependent gene expression.

References
1. Thomas, N.S.B. Cell cycle regulation, in Textbook of Malignant Haematology, Edn. 2nd. (ed. L. Degos, Griffin, J. D., Linch, D. C. and Lowenberg, B.) 33-63 (Martin Dunitz, London; 2004).
2. Smith, A.E. et al. Epigenetics of human T cells during the G0-->G1 transition. Genome Res 19, 1325-1337 (2009).
3. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935 (2009).

Planned Impact

The work contained in this application on transcriptional mechanisms and epigenetics will improve the UK's profile and competitiveness in the following ways:

-Commerce: Gene expression mechanisms are an emerging area for pharmaceutical intervention. Drugs such as the DNA methyltransferase inhibitors 5-Azacytidine (Vidaza) & Decitabine and histone deacetylase inhibitors that target epigenetic mechanisms are in clinical use at King's College Hospital as well as elsewhere. It is envisaged that more drugs will be needed in the future and small companies as well as big pharma have interests in identifying and exploiting such targets. The market for such drugs is estimated to reach USD 4.1 billion by 2012 and the UK needs to have a presence in this important emerging area.

-Health and wellbeing: Abnormalities in transcriptional programmes occur in all cancers and other diseases. These recruit epigenetic modifyers including DNMT1 and HDACs. We and others have used DNMT inhibitors to treat patients with MDS (Raj et al. 2007) and combination drug trials are in progress. However, we need to understand how epigenetic mechanisms affect the expression of important regulatory genes in order to define more precisely which abnormalities really do occur in patients and how such abnormalities can be exploited by the development of new therapies. Importantly, the UK is a leading innovator in drug trials, particularly in leukaemias. New, emerging epigenetics drugs are likely to be effective in treating many patients with a variety of diseases, with the aim of providing therapies that minimise side-effects. Tests that rely on specific transcription and epigenetic abnormalities will provide critical information for treatment, patient stratification and prognosis. Intellectual property arising from this project will be identified, protected and rapidly exploited in consultation with KCL Business.

-Teaching. King's is a major UK research and teaching institution and the provision of high quality teaching to undergraduates and in post-graduate courses. Research-active staff, such as Drs Thomas & Ford, bring a wealth of knowledge and understanding of cutting-edge science to lectures at all levels. This is particularly important for lectures in the new MRes in Translational Medicine, 4-year PhD programme in Systems Biomedicine and specialist audiences in transcription, epigenetics, haematology and immunology. In addition, non-academic audiences at all levels, such as charity workers and fundraisers, as well as opinion and policy makers benefit from the ability to distil and explain exciting new research.

-Research. The development of state of the art research in such an exciting area and its publication in high impact journals has a huge impact on the profile of KCL and the UK's competitive position. This is evidenced by the willingness of leading international researchers, such as Prof Iyer and Prof Marcotte, U.Texas and others to collaborate with the Thomas lab.

-Policy-making. Prioritising Government policy to support basic science and an understanding of its' role in underpinning health and wealth creation is critical, particularly in such difficult financial times. Dr Thomas recently gave a talk to members of the Lords and Commons on genetics and epigenetics and how understanding basic mechanisms is being translated into new therapies. Such educational talks to opinion and policy makers in Government as well as in other sectors, such as charities, are critically important for influencing future opinion and policy.

-UK's international profile. All of the above raise the profile of the UK as being a leader in research and for translation to products and services that create wealth and improve health and wellbeing. This benefits the employment prospects for young researchers, KCL as a World-leading institution and the UK's start-up and pharma industries to potentially bring new home-grown products and services to market.
 
Description Our work concentrates on a normal chemical change to the DNA called methylation, which alters the way genes are regulated. This change, called an Epigenetic change, usually occurs as cells proliferate during what is known as "S-phase". We have shown that changes in DNA methylation also occur before S-phase. Our project concentrates on cells of the human immune system called T cells which proliferate during an immune response to an infection. The proliferation T cells is crucial to increase the number to fight the infection, but it is equally important that they do not proliferate at other times as as this can lead to debilitating "auto-immune" attacks on the body.
We have shown that changes in DNA methylation in these T cells occur in the DNA next to specific genes which control their activity and we have identified these genes. We have also investigated one in more detail which is important in T cell proliferation. We have also shown that the DNA unwinds in these regions and we have shown that the 3D structure of these regions changes and comes together with other genes, we think to coordinate their activity. All this is important as coordinating gene activity in T cells of the immune system is crucial for controlling our body's responses to infection.
Exploitation Route We may be able to target this epigenetic change to alter the way the cells of the immune system behave. This has already been investigated by a follow-on 6 month project funded by King's under the Sparking Impact initiative to determine whether reducing Tet protein expression makes non-dividing cells susceptible to being killed.
Sectors Education,Healthcare,Pharmaceuticals and Medical Biotechnology

 
Description The findings of DNA replication-independent changes in DNA methylation and the genes affected has led to a platform for killing cells before they enter S-phase. This was done via a Sparking Impact follow-on award from King's. The work has potential healthcare impacts as many cancers have non-dividing cells that have mutations in genes affecting DNA methylation that are sources of disease relapse. The work from this project has also been incorporated into short presentations to the public.
First Year Of Impact 2016
Sector Education,Healthcare
Impact Types Societal

 
Description BBSRC Sparking Impact
Amount £9,931 (GBP)
Organisation Biotechnology and Biological Sciences Research Council (BBSRC) 
Sector Public
Country United Kingdom
Start 01/2016 
End 07/2016
 
Description Shallitt Travel Grant
Amount £1,640 (GBP)
Organisation Bloodwise 
Sector Charity/Non Profit
Country United Kingdom
Start 02/2015 
End 02/2016
 
Description Shallitt Travel Grant
Amount £2,950 (GBP)
Organisation Bloodwise 
Sector Charity/Non Profit
Country United Kingdom
Start 03/2015 
End 03/2016
 
Description Epigenetic regulation of chromosome conformation 
Organisation King's College London
Country United Kingdom 
Sector Academic/University 
PI Contribution Isolation of primary human T cells, cell culture and analysis: fixation and preparation for CHi-C.
Collaborator Contribution Expertise in preparation of DNA for CHi-C and analysis of data.
Impact None yet
Start Year 2014
 
Description Gene expression analysis of T cells after TET protein depletion 
Organisation University of Texas at Austin
Country United States 
Sector Academic/University 
PI Contribution Purifying and transfecting primary human cells; analysis of changes in TET protein levels and RNA extraction.
Collaborator Contribution Sequencing RNA by next-generation sequencing (paid by us). Bioinformatic analysis (contribution in kind).
Impact None as yet.
Start Year 2014
 
Description Identifying changes in genomic binding of TET proteins during cell cycle entry 
Organisation King's College London
Country United Kingdom 
Sector Academic/University 
PI Contribution Dr Lamadema has transfected cells with plasmids expressing individual TETE proteins and proved that they express well. She will collaborate with our partners (Dr Paul Lavender) to carry out the ChIP-seq part of the work
Collaborator Contribution Dr Paul Lavender has expertise in ChIP-seq, which he brings to the collaboration.
Impact The outcome has been to identify a site of DNA methylation that changes in humn T cells during entry into the cell cycle. A manuscript is in preparation that describes this work. We are currently collaborating on the next part of the work, chromatin immunoprecipitation of TET proteins and DNA deep-sequencing to identify their binding sites.
Start Year 2014
 
Description 6th form students 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Schools
Results and Impact 15 6th form pupils from a girl's school came to King's for a day and learned about research in a number of areas- from mathematics, chemistry, physics to cancer research- from current PhD students carrying out the work. They asked questions during their visit and afterwards, the school thanked me for organizing this and the PhD students for their time. The pupils were enthused about research by their visit and were happy to have met other women carrying out PhD studies
Year(s) Of Engagement Activity 2014
 
Description Visit to King's by school pupils 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact Meeting with 5th form school children and their parents. The pupils were interested in a career in science. This meeting helped them form opinions on future career options.
Year(s) Of Engagement Activity 2015