The role of different midbrain dopamine neuron populations in signalling reward and cost

Lead Research Organisation: University of Oxford
Department Name: MRC Brain Network Dynamics Unit (BNDU)

Abstract

The brain must learn to use environmental cues to predict whether an action will have positive or negative consequences and the associated cost (e.g. effort) of performing the action. This type of learning involves the chemical messenger dopamine and there are good theoretical models that explain how the nerve impulses generated by dopamine-releasing cells might signal reward. However, despite the elegant simplicity of these models, at the cellular level there is greater complexity. For example, dopamine cells seem to consist of several populations which convey different aspects of the reward signal. Therefore, to better understand reward processes and when these go awry (e.g. in addiction), we must first understand how different dopamine-cell populations signal different parts of the reward signal and to which parts of the brain these signals are sent.

To do this, we will divide populations of dopamine cells according to the brain regions that they innervate and use the combination of different molecules present in each population as a kind of barcode to identify them. We will then use newly-developed, powerful techniques to record nerve impulses from individual dopamine cells in mice during a reward-task and label each recorded neuron. We will investigate how different populations of dopamine cells signal 1) positive and negative consequences and 2) the amount of effort required to obtain reward. We will use each labelled dopamine cell's 'barcode' to tell us where in the brain the signals were sent. To further test the role of different dopamine-cell populations, we will use cutting-edge technologies to measure dopamine released in a particular brain-region and then switch-off one of the dopamine-cell populations. We will also use computer simulations to help us interpret how the dopamine nerve-impulses translate into dopamine release in different regions of the brain.

This research will help us to better understand some of the complexity of reward-related signalling and enhance our theoretical models of learning. We will define populations of dopamine cells and reveal which brain regions receive different components of the reward signal. The 'barcodes', data, and computer models we generate will enable us and other researchers to build a better picture of reward learning and understand how it goes wrong in brain disorders.

Technical Summary

In order to choose optimum actions, the brain must associate environmental stimuli with an outcome, distinguish whether the outcome is positive, and determine the cost (e.g. effort) associated with obtaining it. Dopamine is thought to provide a uniform teaching signal which guides such learning. However, the neurons that generate the signal are heterogeneous, with different neurons signalling different aspects of reward. How then can such diverse neurons transmit a coherent signal to guide learning?
Recent evidence suggests that subpopulations of neurons innervating different regions encode different aspects of reward; it is therefore essential to define how a neuron encodes reward in the context of which brain region it innervates. To achieve this, we will identify combinations of molecular markers which define populations of midbrain dopamine neurons projecting to particular regions of the nucleus accumbens and striatum. We will then record and label single dopamine neurons in head-fixed, behaving mice, and use the molecular signatures to determine how different populations of neurons signal reward and the cost of obtaining it.
We will first examine how neurons projecting to different regions differentially encode positive and negative outcomes. Then, to investigate how neuronal activity translates into dopamine release, we will optogenetically silence one of the target-defined populations and measure dopamine release using fast-scan cyclic voltammetry during a positive/negative outcome task. To examine encoding of cost we will use an instrumental task where the effort required to obtain reward is varied. We will record the activity of different, target-defined dopamine neurons during high- and low-effort trials. These cutting-edge experiments will elucidate how different aspects of reward are encoded by discrete populations of dopamine neurons and transmitted to different forebrain regions.

Planned Impact

The main deliverables from this work are: 1) Identification of molecular markers that define populations of dopamine neurons projecting to different brain regions. 2) Mechanistic insight into how different populations signal positive and negative outcomes and the cost associated with obtaining them. These findings will increase our understanding of how discrete populations of dopamine neurons encode different aspects of reward and how these signals are transmitted to different brain regions. Defining molecular signatures of dopaminergic populations will enable researchers in the field to better understand the development of different groups of dopaminergic neurons and to generate new tools to study the function of discrete populations. The results will also enable us and other researchers to better understand reward learning and how it goes wrong. For example, while this research is not focussed on mechanisms of addiction, further understanding the fundamental processes underlying reinforcement learning will improve our knowledge of how differences in these processes may result in overeating, drug abuse or other forms of addiction (which are estimated to have social and economic costs for the UK exceeding £60bn per year).

The findings from this research will primarily benefit academic labs researching reward, the basal ganglia, development, addiction, and disorders involving the dopaminergic system (e.g. Parkinson's, Schizophrenia). Further understanding signalling by dopaminergic neurons may also provide insight to druggable targets for new or improved therapies. To realise these benefits we will disseminate our findings through talks at scientific meetings, by rapid publication in open-access journals and will make available data, computational models and equipment designs arising from this work.

The other major beneficiary is the post-doctoral research assistant on this programme. They will receive training in cutting-edge in vivo techniques only available in a few laboratories worldwide. This will be of significant value both to them and UK science, given the shortage of researchers with in vivo expertise in both academia and industry. In addition to practical techniques, they will also gain skills in writing, presentation and project management, which would be of benefit in all employment sectors.
 
Description Academic Research Hub for the Prevention of Gambling Harms
Amount £4,000,000 (GBP)
Organisation GambleAware 
Sector Charity/Non Profit
Country United Kingdom
Start 07/2022 
End 06/2027
 
Description BrainSight: Imaging of neural codes over the lifecourse
Amount £203,000 (GBP)
Funding ID BB/S019227/1 
Organisation Biotechnology and Biological Sciences Research Council (BBSRC) 
Sector Public
Country United Kingdom
Start 07/2019 
End 06/2020
 
Description Encoding of decision making by dopamine neurons
Amount £300,000 (GBP)
Funding ID 2279496 
Organisation Biotechnology and Biological Sciences Research Council (BBSRC) 
Sector Public
Country United Kingdom
Start 09/2019 
End 09/2023
 
Description Parkinsons UK project grant
Amount £216,824 (GBP)
Organisation Parkinson's UK 
Sector Charity/Non Profit
Country United Kingdom
Start 05/2018 
End 05/2021
 
Description The role of cerebellum in dopamine neuron reward prediction error coding
Amount £538,547 (GBP)
Funding ID BB/T013907/1 
Organisation Biotechnology and Biological Sciences Research Council (BBSRC) 
Sector Public
Country United Kingdom
Start 07/2020 
End 06/2023
 
Description WaterR: A tool for better management and monitoring of rodent fluid intake
Amount £74,391 (GBP)
Funding ID NC/V000993/1 
Organisation National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) 
Sector Public
Country United Kingdom
Start 05/2020 
End 05/2022
 
Title 'Optogenetics-capable' mouse model of Parkinsonism 
Description We have generated a new line of genetically-altered mice that facilitate access to and interrogation of dopamine-producing neurons in the Parkinsonian brain. These mice are unique in: (1) expressing the enzyme Cre recombinase in neurons that make the dopamine transporter; and (2) moderately over-expressing wildtype human alpha-synuclein. Expression of Cre recombinase allows highly selective access to midbrain dopamine neurons (which are particularly vulnerable in Parkinsonism) for optogenetic manipulations. Over-expression of human alpha-synuclein recapitulates a genetic burden of relevance for inherited and idiopathic Parkinson's disease (see Janezic et al. (2013) and Dodson et al. (2016)). We have also generated the genetic controls for this new mouse line. 
Type Of Material Model of mechanisms or symptoms - mammalian in vivo 
Year Produced 2017 
Provided To Others? No  
Impact No impacts yet 
 
Description Computational predictions of DA release 
Organisation University of Copenhagen
Country Denmark 
Sector Academic/University 
PI Contribution We provide data recorded from individual neurons in behaving animals and intellectual input relating to experimental design and interpretation
Collaborator Contribution Jakob performs computational simulations to investigate the consequences of neuronal firing for DA release
Impact Research paper (PMID: 27001837) "Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism"
Start Year 2015
 
Description Recording dopamine signals 
Organisation University of Otago
Department Dunedin School of Medicine
Country New Zealand 
Sector Academic/University 
PI Contribution We supported research from groups at these universities by recording dopamine signals during learning
Collaborator Contribution Groups at these universities recorded neural signals from other brain regions during learning
Impact Publication
Start Year 2021
 
Description Recording dopamine signals 
Organisation University of Oxford
Country United Kingdom 
Sector Academic/University 
PI Contribution We supported research from groups at these universities by recording dopamine signals during learning
Collaborator Contribution Groups at these universities recorded neural signals from other brain regions during learning
Impact Publication
Start Year 2021
 
Title 3d printed syringe drive 
Description These are downloadable files for 3d printing an 'easy to make' piece of behavioural equipment equipment. The syringe drive was designed to be a low-cost device to repeatedly deliver small volumes (~10ul) or to slowly deliver larger volumes. One example use of the pump is to provide liquid rewards in operant behavioural experiments. 
Type Of Technology Physical Model/Kit 
Year Produced 2018 
Impact none yet (in progress) 
URL https://data.mrc.ox.ac.uk/data-set/syringe-pump
 
Description MRC BNDU Schools open day 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact 115 pupils, teachers, and politicians attended for a visit to the MRC Brain network dynamics unit. We presented our research and discussed careers in research. The students had interesting questions and teachers reported increased interest in brain research.
Year(s) Of Engagement Activity 2017
URL http://www.mrcbndu.ox.ac.uk/news/schools-open-day-2017
 
Description Parkinson's group visit 2017 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Patients, carers and/or patient groups
Results and Impact ~30 patients and carers attended for a visit to the MRC Brain network dynamics unit and we presented talks on our latest research and gave an insight into work in the laboratory. The questions and comments were insightful but also gave us an idea of what was most important from the patient's perspective.
Year(s) Of Engagement Activity 2017
URL http://www.mrcbndu.ox.ac.uk/news/unit-hosts-parkinson%E2%80%99s-groups-during-mrc-festival-medical-r...
 
Description Parkinson's patients visit 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Patients, carers and/or patient groups
Results and Impact Two short presentations on "Deep Brain Stimulation as a therapy for Parkinson's" and "Use of animals in Parkinson's research", followed by a laboratory tour, talks, and a chance to meet with scientists. The visit concluded with a Q & A session, and a chance for the visitors to give their feedback. We took the opportunity to promote our local networks for Patient and Public Involvement (PPI) in research which resulted in half of the attendees signing up for PPI.
Year(s) Of Engagement Activity 2018
URL https://www.mrcbndu.ox.ac.uk/news/unit-hosts-parkinsons-groups-2018-mrc-festival-medical-research
 
Description Parkinson's research day 2019 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Patients, carers and/or patient groups
Results and Impact ~120 patients and carers attended a research day where we presented talks and discussed the drug discovery process. It was useful to discuss patient's needs.
Year(s) Of Engagement Activity 2019
URL https://www.bna.org.uk/mediacentre/events/movement-disorders-research-showcase-bristol/
 
Description Schools open day 2018 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact 70 GCSE/A level students from 6 local schools within Oxfordshire area attended the school open day. A range of hands-on practical sessions, lab tours and talks to provide the students with an insight into the nature and benefits of medical/brain research, and inspire them to pursue a career in science. Also in attendance were the Mrs Jean Fooks - Lord Mayor of Oxford, Cllr Chris Wright - Chair of Garsington Parish Council and Cllr Elizabeth Gillespie - South Oxfordshire District Council
Year(s) Of Engagement Activity 2018
URL https://www.mrcbndu.ox.ac.uk/news/schools-open-day-2018
 
Description UK Israel computational workshop 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact The workshop was designed to engage computational modellers with experimental sciences to foster (international) research collaborations.
Year(s) Of Engagement Activity 2017
URL https://korngreen.wixsite.com/bgws2017
 
Description visit to local primary school 2017 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact We visited a primary school to explain what we study and why it is important. Around 30 pupils, teachers, and international visitors attended. We presented our research and discussed careers in research. The teachers reported increased interest in studying the brain and using microscopes.
Year(s) Of Engagement Activity 2017
URL http://www.mrcbndu.ox.ac.uk/news/unit-visits-local-primary-school-mrc-festival-medical-research