Bilateral BBSRC-SFI Innate immune signalling underpinning Klebsiella-host interactions

Lead Research Organisation: Queen's University Belfast
Department Name: Sch of Medicine, Dentistry & Biomed Sci

Abstract

Our struggle against infectious diseases is far from over. Globalisation has increased the risk of pandemics, and the rise of antibiotic-resistant microbes threatens to render existing drugs useless. Of particular concern is the health burden of respiratory infections being the UK in the top 25 countries for deaths from acute respiratory infections, above most other European countries. It is therefore urgent and necessary to develop new therapeutics based on new concepts and approaches. This is particularly important in the case of Klebsiella infections showing a 12% increased incidence over the last five years within the UK alone. In fact, the increasing isolation of strains resistant to "last resort" antimicrobials has significantly narrowed, or in some settings completely removed, the therapeutic options for the treatment of Klebsiella infections. Unfortunately, at present, we cannot identify candidate compounds in late-stage development for treatment of multidrug Klebsiella infections; this pathogen is exemplary of the mismatch between unmet medical needs and the current antimicrobial research and development pipeline. Alarmingly, recent studies have recognized that several Klebsiella virulent and multidrug resistant isolates have access to a mobile pool of virulence and antimicrobial resistance genes; hence making possible the emergence of a multidrug resistant, hypervirulent K. pneumoniae isolate capable of causing untreatable infections in healthy individuals. However, our understanding of Klebsiella pathogenesis still contains considerable gaps thereby making a compelling case to better understand Klebsiella infection biology in the context of the complex interactions between bacterial pathogens and their hosts.
In this proposal, by combining the distinct but synergistic expertise and experience across the disciplines of molecular and cellular microbiology, biochemistry, and immunology, of the Bengoechea (UK) and Bowie (Ireland) laboratories we will better understand the various Achilles heels of host defense, and thereby more precisely shore-up these vulnerable hot spots while deconstructing the strategies used by Klebsiella to survive within the infected tissue. Our efforts will expose a Klebsiella anti-immune strategy based on co-opting functions (receptors and immune signals) implicated in antimicrobial defense. This remarkable strategy is radically different to those employ by other well studied bacterial pathogens which disrupt host defenses instead of hijacking them like Klebsiella. Harnessing the host-pathogen interface opens the avenue for new antimicrobial therapeutics. Interference with pathogen virulence and/or signalling pathways hijacked by pathogens for their own benefit is an especially compelling approach, as it is thought to apply less selective pressure for the development of resistance than traditional strategies, which are aimed at killing pathogens or preventing their growth. There is extensive research on the pathways targeted by Klebsiella, and new drugs are currently under development. We anticipate that the outcomes of this proposal would lead to test these drugs in pre-clinical models of klebsiella disease hence allowing a potential fast-track transition from the basic research to clinical development.

Technical Summary

Successful elimination of infections by the innate immune system is crucially dependent on the activation of germline-encoded pattern-recognition receptors (PRRs) that survey both the extracellular and intracellular space for signatures of infection. This proposal will expose a remarkable immune evasion strategy by a human pathogen based on co-opting cellular functions dedicated to control immune balance. By exploiting the power of cellular microbiology with in vivo models, we will embark on harnessing fundamental knowledge about how Klebsiella pneumoniae avoids immune control by exploiting PRR regulators and the immunosuppressive effects of type I IFN. K. pneumoniae has been recently singled out as an "urgent threat to human health" by the UK Government, the U.S. Centers for Disease Control and Prevention, and the World Health Organization due to extremely drug resistant strains. Despite its clinical relevance, our understanding of K. pneumoniae pathogenesis contains considerable gaps thereby making a compelling case to better understand its infection biology to design new strategies to treat Klebsiella infections.This proposal capitalizes on a decade of studies on K. pneumoniae infection biology and innate immune signaling by Bengoechea and Bowie laboratories' and will provide novel mechanistic insights into (i) inflammasome activation, (ii) DNA sensing in bacterial infections, and (iii) immunosupressive properties of type I IFN promoting virulence (reprogramming of epigenome, avoiding cell-autonomous immunity). Altogether, our research will place Klebsiella as a true cell biologist manipulating all aspects of cell function to overcome immune responses. The findings of this proposal may serve as the foundation for novel therapeutic and prevention strategies based on enhancing innate host resistance to infection, and ameliorating pathophysiological tissue destruction.

Planned Impact

Who will benefit from this research? Academics will be the main short to medium term beneficiary, as the research will provide knowledge to understand how pathogens counteract the activation of host defenses. This is one of the most competitive areas of research in the field of microbial pathogenesis and immunology. The main collaborative interactions will be with Prof Philippe J. Sansonetti (Institut Pasteur) on Klebsiella infection biology; and Prof Kate Fitzgerald (UMass Medical School) on innate immune signalling. However we anticipate exciting new collaborations with groups focusing on type I IFN. The research will enhance the career development of the requested PDRAs. They will receive training in some of the most novel aspects of host-pathogen interactions with emphasis on innate immune signaling. Industry: The growing number of organisms resistant to available antibiotics has become a public health threat worldwide, being Klebsiella a paradigm of an emerging pathogen. There is a need to develop effective therapeutics based on new targets and approaches. There are already drugs under development targeting the signalling pathways manipulated by Klebsiella which can be tested in our pre-clinical infection models. This will allow a fast-track transition from the basic research to clinical development. Public bodies: The UK Government is committed to taking an integrated approach to tackle the antimicrobial resistance challenge as part of the one health agenda at a national and international level. This proposal is aligned with the strategic action "supporting the development of new antimicrobials and alternative treatments" outline in the UK antimicrobial resistance strategy 2013- 2018. General public: Infections are one of the major global threats that are unfortunately very likely to become more urgent in the near future. It is not appropriate to generate an atmosphere of fear since medical care in UK is at a very high level. However, it is advisable to increase public awareness about the potential threats and to provide the UK national regulatory bodies, with a top-class knowledge platform to maintain the unique position of UK as an area of research excellence on infection biology.
How will they benefit from this research?: Knowledge of value to the academic sector will be communicated by publication in peer-reviewed journals, oral and poster presentations at conferences and via invited lectures. Exchange of staff and students will promote knowledge transfer between collaborative groups. Staff working on the project will receive training on complementary skills (group management, know-how transfer, and entrepreneurship) which together with the cutting-edge research training received will give the PDRAs all options for either an excellent career in academia, industry, or to develop a business plan for their own start-up enterprise. Knowledge transfer to industry on new therapeutics to treat infections might have economic potential since royalty payments can reach numbers in the magnitude of several millions or tens of millions. This new treatment(s) will benefit the UK health system. The grant will have impact on the wider public sector by continuing our program of scientific communication. Bengoechea and Bowie laboratories host undergraduates (summer students) to engage them in the fundamentals of scientific research. Social media will be targeted via Twitter (@josebengoechea). Queen's University Belfast, Trinity College Dublin, and the Bengoechea and Bowie web pages will be additional channels to promote this BBSRC-SFI-funded research. Queen's and Trinity produce regularly videos (Bowie, https://www.tcd.ie/Biochemistry/assets/mp4/ABowie.mp4; Bengoechea https://www.youtube.com/watch?v=H2kaBs9IPzg) to showcase the impact of the research done.

Publications

10 25 50

publication icon
Bengoechea JA (2017) Vibrio cholerae amino acids go on the defense. in The Journal of biological chemistry

publication icon
Bengoechea JA (2020) SARS-CoV-2, bacterial co-infections, and AMR: the deadly trio in COVID-19? in EMBO molecular medicine

publication icon
Bengoechea JA (2019) Klebsiella pneumoniae infection biology: living to counteract host defences. in FEMS microbiology reviews

 
Description In this project, by combining the distinct but synergistic expertise and experience across the disciplines of molecular and cellular microbiology, biochemistry, and immunology, of the Bengoechea (UK) and Bowie (Ireland) laboratories we will better understand the various Achilles heels of host defense, and thereby more precisely shore-up these vulnerable hot spots while deconstructing the strategies used by Klebsiella to survive within the infected tissue. Our teams have uncovered a new pathway manipulated by Klebsiella to avoid the action of macrophages-governed antimicrobial functions. Klebseila leverages the immunomodulatory functions of the evolutionary conserved protein SARM1 to dampen defences. The pathogen exploits an immune effector, type I IFNs, to activate SARM1. Altogether, Klebsiella manipulates a conserved SARM1-type I IFN axis. Remarkably, mice lacking sarm1 do clear the infections, indicating that drugs targeting SARM1 which then could be used to treat Klebsiella infections. We have demosntrated the contribution of SARM1 to attenuate the production of the inflamamtory cytomnine iL1b following activation of the NLRP3 and AIM2 in inflammasomes.
We have also demonstrated the role of proteins containimng the PYHIN domain containing protein MNDA governing the production of IFNs in human monocytes. MNDA regulates the activation of the key transcriptional regulator IRF7, establishing a new role for MNDA. This new role could be exploited therapeutically to design new therapies against inflammatory diseases, and viral infections.
Exploitation Route We anticipate that other academnic groups will investigate the pathways and signalling systems we will uncover in this project. We anticipate huge inbterests from pahrma and biotech companies to exploit the pathway we have discovered to limit exacerbations of inflammation, and to treat infections.
Sectors Healthcare,Pharmaceuticals and Medical Biotechnology

 
Description In our stand at the Northern Ireland Science Festival (2018, 2019, 2020) we presented how pathogens may take advantage of our cells to avoid being eliminated by our defences. This raised awareness of the fascinating microbiology world and the importance of developing new therapeutics.
Sector Education
Impact Types Societal

 
Description Antimicrobial resistance
Amount kr 20,000,000 (NOK)
Organisation Bergen Research Foundation 
Sector Academic/University
Country Norway
Start 01/2020 
End 12/2023
 
Description DEL stiudenship
Amount £65,000 (GBP)
Organisation Government of Northern Ireland 
Sector Public
Country United Kingdom
Start 09/2017 
End 09/2020
 
Description DEL studenship
Amount £65,000 (GBP)
Organisation Government of Northern Ireland 
Sector Public
Country United Kingdom
Start 09/2018 
End 12/2021
 
Title Method to assess the interaction between pathogens and immune cells in vivo using mass cytometry 
Description We have developed a novel method to detect the interaction between Klebsiella pneumoniaer and immune cells in vivo and ex vivo by exploiting mass cytometry. This method allows the simultaneous detection of bacteria, and immune cells characterized with more than 30 markers. 
Type Of Material Technology assay or reagent 
Year Produced 2021 
Provided To Others? Yes  
Impact This method has allowed to detect interactions between K. pneumoniae and cells never reported before. These findings will allow to investigate how Klebsiella manipulate immune cells, and to better understand how the immune system senses this infection. 
 
Description Collaboration West African Centre for Cell Biology of Infectious Pathogens 
Organisation University of Ghana
Department West Africa Centre for Cell Biology of Infectious Pathogens
Country Ghana 
Sector Academic/University 
PI Contribution We have undertaken an analysis of MDR infections in South Saharan countries. We brought our knowledge on molecular epidemiology and inferction biology of multidfrug resistant infections.
Collaborator Contribution WACCBIP contributes with his expertise on infections and immune responses, and their network of collaborators across sub Saharan countries.
Impact This is a multidisciplinary collaboration bridging molecular microbiology, molecular epidemiology, and immunology.
Start Year 2018
 
Description Niorthern Ireland Science Festival 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Schools
Results and Impact The laboratory organized a stand presenting how our RCUK-funded research is tackling the problem of antibiotic resistant infections. The purpose was to increase awareness of the health problem. More than 300 persons (including school kids) attended the event and our stand, the feedback indicates an increase awareness of the health problem and has translated into donations to our research team
Year(s) Of Engagement Activity 2019
URL https://www.nisciencefestival.com/
 
Description Northern Ireland Science Festival 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact 100 visitors from all ages attended a range of demonstrations and interactive laboratory research activities on eye disease, diabetes/vascular disease, respiratory/infectious disease.
Year(s) Of Engagement Activity 2020
URL https://www.nisciencefestival.com/event.php?e=186
 
Description Northern Ireland Science Festival 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact The laboratory organized a stand presenting how our BBSRC-funded research is tackling the problem of antibiotic resistant infections. The purpose was to increase awareness of the health problem. More than 300 persons (including school kids) attended the event and our stand, the feedback indicates an increase awareness of the health problem and has translated into donations to our research team.
Year(s) Of Engagement Activity 2018
URL http://www.nisciencefestival.com/
 
Description Northern Ireland Science Festival COVID19 research 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact More than 4000 viewers watched the videos on Covid19 research posted in YouTube by the Northern Ireland Science Festival. The videos sparked questions and comments, and resulted in additional interactions.
Year(s) Of Engagement Activity 2021
URL https://nisciencefestival.com/e21486-spotlight-on-covid-19-research-at-the-wellcome-wolfson-institut...
 
Description School visit (South Eastern Regional College, SERC) 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact 55 students attended for a school visit to the Institute. the visit riase awareness of research, and what the lab is doing to tackle antimicrobial resistance. Also students learnt about risk assessment, and lab management.
Year(s) Of Engagement Activity 2019