Host-pathogen interactions important in the movement of Campylobacter jejuni from the broiler chicken gut to edible tissues (CampAttack)

Lead Research Organisation: Newcastle University
Department Name: Sch of Natural & Environmental Sciences

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

Technical Summary

Campattack technical summary
Key tenets of sustainable chicken production are that the animals' health and welfare should be protected and that the end products should not endanger public health. Worldwide most (>75%) chickens are Campylobacter-positive at point of sale, mainly with C. jejuni, and it is estimated that 80% of human cases (~500000) in the UK are chicken-associated. Most UK chickens are grown using intensive systems (broiler production), which can compromise bird welfare and raise the Campylobacter public health threat. There is increasing evidence that edible tissues of chicken, particularly liver, are C. jejuni-positive. Our preliminary data show that infection of liver tissues is a consequence of colonisation of the upper gut with strains of C. jejuni that are inherently better able to leave this organ. Host inflammatory responses, the levels of which are C. jejuni strain-dependent, also play an important role. Building on a strong novel dataset, which has identified a suite of C. jejuni genes and host innate immune responses involved in extra-intestinal spread, our proposed studies will determine the major processes underlying this important bird and public health scenario.
We and our industrial partner Merck Animal Health will conduct in vitro experiments, using novel chicken epithelial cell lines, and infect commercial chickens (Ross 308) in in vivo experiments with wild type C. jejuni and strains with mutations in some of the genes that we have identified as being of high importance. We will also use birds inherently deficient in key immune processes. A range of host immune responses will be measured in all experiments. The identification of the most important pathogen mechanisms and host immune responses involved in the extra-intestinal spread of C. jejuni will inform breeding programmes and immunity-based controls. We will use modelling to investigate the relative importance of the underlying biological mechanisms.

Planned Impact

Please see lead documents

Publications

10 25 50
 
Title Gut_Model 
Description Two models one of the host gut digestion and gut microbiome and a second conceptual model of immunological responses to pathogen attack were created in R. Both models await data from the other collaborators. These did all of the laboratory work which was to parameterise the models. I received the data for the second model on 10/02/2023. Data analyses are therefore ongoing. Needless to say covid lockdowns disrupted data collection and subsequent modelling. 
Type Of Material Computer model/algorithm 
Year Produced 2023 
Provided To Others? No  
Impact Too early to say