Programming GPCR signalling within the endocytic network; mechanisms and therapeutic applications

Lead Research Organisation: University of Warwick
Department Name: Warwick Medical School

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

Technical Summary

Membrane trafficking of receptors represents a fundamental mechanism to translate complex signalling networks into specific downstream responses. This is the case for numerous cellular signalling systems, including the pathways activated by the superfamily of G protein-coupled receptors (GPCRs). Thus, a detailed molecular description of how membrane trafficking pathways are indispensable in controlling GPCR signalling are key in the fundamental understanding of cellular regulation and how aberrant signalling can result in disease. This an area of precedence in biology and medicine due to the ongoing search to identify GPCR modulators with high specificity. We have identified a novel endosomal compartment critical for the sorting and signalling of distinct GPCRs, termed the very early endosome (VEE). Using a model GPCR for the VEE, the luteinizing hormone receptor (LHR), this project will identify the fundamental mechanisms spatially encoding GPCR activity at the VEE and its downstream roles. The adaptor protein APPL1 is so far, the only VEE protein known to regulate sorting from the VEE and endosomal GPCR signalling. Spatially encoded signalling from the VEE has a critical impact on downstream cellular responses. Altering LHR trafficking to the VEE in the human endometrium is linked to impaired decidualization (cell differentiation) with implications in recurrent miscarriage. Other GPCRs, including the FSH receptor and short chain fatty acid receptor FFA2, also require internalization to VEE/APPL1 endosomes for their function. Employing super-resolution imaging, coupled with quantitative proteomic profiling, and biochemical signal analysis in heterologous and primary human endometrial 2D and 3D cultures, we will identify the core molecular machinery directing regulated sorting and signalling from this novel compartment, profile the GPCR signal pathways that are spatially encoded by the VEE, and identify impact both physiologically and pharmacologically.

Planned Impact

Who might benefit from this research?
This project aims to address fundamental questions of how G protein-coupled receptor (GPCR) signal diversity is translated to specific cellular and physiological responses. This an area of precedence in biology and medicine due to the intense interest and demand in identifying GPCR modulators with high specificity. Thus, identified beneficiaries outside the academic arena are primarily those in industry and the commercial sector. GPCRs are the most successfully exploited class of drug targets, and their role in pathogenesis of human disease maintains the strong interest in new basic science discoveries by these sectors. In addition to companies investing in targeting these receptors (Merck, Pfizer, Heptares, Trevena Inc, Ferring, GSK, TocopheRx, EMD Serono), new basic science findings in GPCR research are of high interest across this sector for other GPCRs and commercial sectors creating GPCR screening tools for research (e.g. DiscoveRx, CisBio). This work could have an impact long-term for clinical translation and public health, but also on the UK economy by reducing financial burdens of the NHS (in addition to commercialization). This work has also identified those involved in Education as a beneficiary, from the training of the postdoctoral posts on this project to secondary schools, information resource of public and patient education directly or via Charities.

How might they benefit from this research?
GPCRs are an important target for therapeutic intervention and many successful drugs on the market today modulate their activity. The research proposed has the potential to provide information for design of novel screening platforms, which could be developed commercially as an assay, used in industry or academic labs. Also in identifying strategic targets that feature defined modulation of receptor activity, rather than global agonists/antagonists. A rapidly growing area of high interest in the drug discovery industry is to design GPCR compounds that show bias towards specific receptor activities. Although we will focus on specific model GPCRs for these pathways, the fundamental nature of the findings from our proposed project will uncover mechanisms that will be pertinent to other GPCRs and associated conditions involving these receptors. We intend to establish advisory panel meetings with members from Industry, Academia and Third sector, throughout the project and mediated by Imperial's Corporate and Enterprise Partnerships Team, that will facilitate in steering the path to commercialization and knowledge exchange platforms for stakeholders. In addition, current industry collaborators of the PI and Co-PIs will be contacted during the award in addition to engagement with the Imperial College Cross-Faculty Centre for Drug Discovery Science, led by Co-PI (E.T). If Industrial collaboration and/or commercial exploitation are successful this could escalate in to long-term benefits in UK economy from revenue, employment and ultimately in health benefits. The Co-PI (J.B) will enable translational opportunities by forming links with clinicians and awareness opportunities for patients and their families e.g. via Tommy's highly successful social media campaign. Imperial College London and University of Warwick also have strong commitments to both engaging general public and in education in Secondary schools. Training that the posts will receive would be beneficial for any employment sector by the development of transferable skills. These include communication skills, project and time management, problem solving, public engagement, information technology and mentoring.
 
Description The luteinizing hormone choriogonadotropin receptors (LHCGR) are cell surface signalling proteins. They have been implicated in early embryonic-endometrial communication but evidence of their expression and role in the endometrium is contentious. We provide evidence that human endometrial stromal cells lack functional receptors but identify the receptor in a small sub-population of stromal cells. We challenge any notion that the LJHCGR is expressed at a functional active level in the human endometrium but the discovery of a discrete subpopulation of endometrial cells may plausibly account for the conflicting evidence in the literature.
Exploitation Route Our findings provide a platform for future research looking at LHCGR in the endometrium. This area of research is contentious and often contradictory, and our findings can be integrated into future experimental plans and grant applications to avoid wasteful allocation of resources.
Sectors Pharmaceuticals and Medical Biotechnology

URL https://www.biorxiv.org/content/10.1101/2022.01.05.474837v1