Epigenetic reprogramming of FLC
Lead Research Organisation:
John Innes Centre
Department Name: UNLISTED
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Technical Summary
At a certain stage in their life-cycle plants undergo the transition from vegetative to reproductive development. The correct timing of this transition, flowering, is crucial for reproductive success so multiple environmental and endogenous signals are integrated to judge when to flower. The Dean laboratory is studying the importance of prolonged cold or winter for flowering, a process known as vernalization. The need for vernalization ensures plants overwinter vegetatively and flower in the favourable conditions of spring. Vernalization involves cold-induced and stable repression of a floral repressor, FLC by a Polycomb-mediated chromatin silencing mechanism. Unlike animals, the germ line in plant cells originates from somatic tissues of the flower so, after vernalization, FLC expression needs to be reset to ensure a vernalization requirement in the next generation. Recently, our lab in collaboration with others has shown using an FLC-GUS translational fusion that FLC levels are restored after vernalization, at different stages through male reproductive development and in early stages of embryo development. We have now used a Landsberg erecta line carrying an FLCluciferase translational fusion to identify mutations disrupting the resetting of FLC expression. In this proposal we will utilize these mutations to further define the FLC reprogramming process, using two complementary approaches: (i) characterization of molecular signatures that define the resetting process; (ii) identification of factors that regulate or are directly involved in this process, to explore the molecular mechanisms involved. The results obtained from this work will help us to understand epigenetic reprogramming of Polycomb targets in plants and other organisms.
Planned Impact
unavailable
Organisations
People |
ORCID iD |
| Caroline Dean (Principal Investigator) |