Development of air-stable n-channel organic field-effect transistors based on soluble fullerene derivatives

Lead Research Organisation: Imperial College London
Department Name: Physics

Abstract

We aim to develop air-stable high mobility (>0.1 cm^2/Vs) electron transporting (n-channel) organic field-effect transistors (OFETs) employing soluble fullerene derivatives. The main motivation for developing n-channel OFETs is that they enable complementary circuit design, a vital ingredient for the fabrication of the next generation large-scale, low-power, high-performance organic integrated circuits. As our material workhorse we choose the family of fullerenes due to their record-breaking electron mobility (~6 cm2/Vs). Emphasis is placed on soluble derivatives due to their processing advantage for large-area, low manufacturing cost applications. The novelty of the proposed work originates from our recent study where the first solution-processed, air-stable n-channel fullerene transistors have been demonstrated. To the best of our knowledge, this unique combination of solubility, ambient stability and electron transporting character has only been demonstrated previously in two organic molecules and can be considered as a significant breakthrough. The subject of the proposed work is very topical with huge technological importance in the area of organic electronics and it is anticipated to have significant impact both in academic research and industrial R&D worldwide.
 
Description Philips Research Laboratories 
Organisation Philips Research Laboratories
Country Netherlands 
Sector Private 
Start Year 2007