AMORPHOUS CHALCOGENIDE-BASED OPTOELECTRONIC PLATFORM FOR NEXT-GENERATION OPTOELECTRONIC TECHNOLOGIES

Lead Research Organisation: University of Cambridge
Department Name: Chemistry

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
 
Description We have discovered that, using ion implantation, one can change the electronic charge-carrier type in amorphous chalcogenide materials, thereby opening the possibility of making p-n junction-based devices from such materials
Exploitation Route We are about to submit a new grant application to EPSRC to continue the work carried out in this 2-year project
Sectors Electronics

 
Description Findings have informed academic knowledge
First Year Of Impact 2012
Sector Electronics
Impact Types Societal

 
Title Research data supporting "The relation between chemical bonding and ultra-fast crystal growth" 
Description This document explains the key data contained in this repository for the following manuscript: The relation between chemical bonding and ultrafast crystal growth by T. H. Lee and S. R. Elliott General: We include here the atomic coordinates of generated amorphous GST model. In addition, we include the atomic coordinates of models captured at certain frames during growth simulations (i.e. the initial and final configurations during sequential cooperative atomic movements, as shown in Fig. 5a). The data for the distribution of atomic distance and ELFbond for axial and equatorial bonds of Ge(4,1) and Sb(4,1) units are also included here. Data files: 1. Amorphous_model.cif This file contains the atomic coordinates of amorphous GST model generated (Fig. 1a). The file can be viewed by, for instance, VESTA (http://jp-minerals.org/vesta/en/). 2. Atom_ligand_distance_Ge41_axial_equatorial.txt The first, second, and third columns correspond to the bond distance in Å, the number of axial bonds, and the number of equatorial bonds, respectively, for Ge(4,1) units observed in amorphous models (Fig. 2d). 3. Atom_ligand_distance_Sb41_axial_equatorial.txt The first, second, and third columns correspond to the bond distance in Å, the number of axial bonds, and the number of equatorial bonds, respectively, for Sb(4,1) units observed in amorphous models (Fig. 2d). 4. ELF_Ge41_axial_equatorial.txt The first, second, and third columns correspond to the ELEbond, equatorial-bond populations, and the population of axial bonds, respectively, for Ge(4,1) units observed in amorphous models (Fig. 3a). 5. ELF_Sb41_axial_equatorial.txt The first, second, and third columns correspond to the ELEbond, the population of equatorial bonds, and the population of axial bonds, respectively, for Sb(4,1) units observed in amorphous models (Fig. 3a). 6. Atomic_configuration_growth.cif This file contains the atomic coordinates of GST model during crystal growth. The file can be viewed by, for instance, VESTA (http://jp-minerals.org/vesta/en/). 
Type Of Material Database/Collection of data 
Year Produced 2017 
Provided To Others? Yes