Delivering Graphene as an Engineering Material

Lead Research Organisation: University of Manchester
Department Name: Materials

Abstract

Graphene is the strongest and stiffest known material, has exceptional electrical properties and has been shown to increase electrochemical performance. However, in order to realise the full potential of this material, there needs to be a cultural change so that routes from the test tube to the industrial plant are considered. To achieve this challenge, I will take an integrated research approach following graphene through from its production to processing and two target applications; composites and electrodes for energy storage. The research work will be underpinned by developing world-leading science and collaborating with leading laboratories. The key aims that will be addressed by this proposal are: 1. To study and develop new production methods for graphene.2. To develop the processing techniques for making controlled architectures.3. Targeted Application: Realise the potential of graphene in polymer composites for aerospace, automotive, construction, adhesive and packing applications.4. Targeted Application: Develop manufacturing routes for high performance electrodes for energy storage (e.g. rechargeable batteries and fuel cells).5. Transfer of the technology developed into industry and academia.To ensure significant impact, I have established links with industrial partners, taking the work through the supply chain from manufacturers (Thomas Swan) to material producers (Huntsman, Technical Fibre Products) and end users (DSTL, Airbus and Morgan Advanced Materials). Similarly, strong links will be made with national and international academic partners. Good interaction with all partners will be developed by the students and staff on the project spending time within the partners' laboratories. By the end of the project, I want to have put engineering components into the hands of industry, having published high impact papers on the underlying science which delivered the components, and trained PhD students and PDRAs to take this knowledge into UK industry and academia.

Planned Impact

At present, graphene probably has a higher profile than any other material. However, as stated in the objectives, graphene's impact is limited due to difficulties with producing and processing it into the architectures required for applications. I am addressing these issues through developing the underlying science in order to enable industry and academia to take this exciting new material through to applications which will benefit industry and society. The proposal will bring considerable benefits to industry, as highlighted by the strong industrial support. These industrial partners have identified key applications for graphene but do not yet have the materials technology to produce the graphene structures needed. The proposed workplan will deliver these materials, allowing industry to develop products. Furthermore, the proposal will provide a throughput of trained personnel to support this uptake of graphene in industry. One risk for industry is developing a new graphene product only to find that the graphene architectures are not commercially available. Therefore, I will collaborate with the entire supply chain from chemical manufacturers (Thomas Swan) to material producers (Huntsman, Technical Fibre Products) and end users (Airbus and Morgan Advanced Materials and Technology). Successful applications of graphene also have social as well as economic benefits. The two target applications, composites and energy storage both have an increasing impact on our lives. Structural composites are a high risk milestone but would have a significant impact on society. For example, high performance composites are essential for the new generation of large wind turbine blades and are used to reduce the weight of commercial aircraft. Importantly, if the cost of a structural filler, such as graphene, can be lowered to $10/kg then it will be taken up by the automotive industry at a million tons a year. Graphene is a potential polymer matrix modifier in multi-functional materials and will improve the polymer's electrical conductivity, gas barrier properties, fire retardancy and high temperature performance. Potential aerospace and wind turbine applications include damage tolerance, strain sensing and electrically conductive coatings. Huntsman envisage a wide impact across their range of polyurethane foams, composites, coatings and adhesives, with graphene achieving performance that could not be obtained with other technical solutions. Finally, DSTL are interested in developing ballistic protection for the armed forces. Electrochemical based energy storage and power generation are increasingly becoming important as society moves to cleaner energy sources and increases their use of portable electronics. This proposal will deliver new materials and architectures for electrodes in lithium-ion, fuel cell and supercapacitor devices. These electrodes aim to improve power densities, cell efficiencies and cycle life, giving people better performing devices. Overall, I am certain that the work, if funded, would have significant impact in academia, industry and society because of the contributing factors given above and within the Academic Beneficiaries section.

Publications

10 25 50
 
Description This project consisted of four main phrases:

1. Graphene production.
We have developed a reductive exfoliation route for graphene which can produce large diameter flakes with a low degree of defects compared to oxidative or high shear routes. The electrochemical exfoliation route has also allowed the surface chemistry of the graphene to be tuned during production, including the exfoliation of graphane (hydrogenated graphene.) We have also developed CVD routes for graphene on liquid metal substrates, based upon our thermodynamic modelling of the growth conditions.

2. Graphene architectural control
We have developed a detailed understanding of the rheology of graphene in water and polymer melts. Graphene is considerably more processable at high loadings than nanotubes, meaning that graphene should be easy to take through into industry. We have used non-aqueous solvents to form aerogels from graphene and other 2D materials. This change of solvent means that the aerogel precursors can be processed using standard polymer processing techniques.

3. Graphene composites
Using model experimental systems we have demonstrated that graphene follows standard composite micromechanical theory despite being only one atom thick. Consequently we realised that there was a critical flake length required for good mechanical reinforcement, explaining previous literature when no mechanical reinforcement was seen. Further analysis allowed us to establish the design rules for graphene-polymer composites, giving the optimal flake length and thickness needed for reinforcement. These design rules allowed us to produce bulk graphene composites with both thermosets and thermoplastics that showed improved mechanical properties.

4. Graphene based energy materials
We have found that a small addition of graphene to a oxide based thermoelectric increases the thermal operating window of the device down to room temperature, making them ideal of applications where the temperature is not constant. We have also developed routes for doping and processing graphene for sueprcapacitor applications.
Exploitation Route The design rules and micro mechanics of composites have been published and allow academia and industry to easily predict the behaviour of their composites.

The aerogel route for high surface area constructs of 2D materials opens opportunities in a range of applications.

Our exfoliation route is providing materials for further study and applications.
Sectors Aerospace, Defence and Marine,Chemicals,Energy,Manufacturing, including Industrial Biotechology

 
Description The Fellowship meant I could focus on developing the fundamental understanding of graphene production and its use in composites and energy storage, and thus lay the groundwork for the following 10+ years of research. In particular, this foundation enabled me to apply for further major grants (e.g. the Graphene Flagship), build industrial links and apply for my current R.A.Eng Research Chair. The work on graphene production through electrochemical exfoliation has led to a £1m collaborative project with Morgan Advanced Materials to scale up the route and identify the key applications for this material. This collaboration continued in 2019 with the award of Royal Academy of Engineering/Morgan Advanced Materials in Carbon Materials which will take more general knowledge of sp2 carbons developed during the EPSRC fellowship and re-apply to more traditional carbon materials and applications. The grant allowed us to establish the fundamental structure-property relationships for graphene composites and coating. Subsequently we had have industrial collaborations with partners including Sabic, Teijin, Nouryon Hempel, BAE, Tata, Haydale and Versarien to transfer this knowledge to applications. I have also been heavily involved in the Graphene Flagship as Deputy Leader for the composite work-package. We have developed new routes towards energy generation materials with graphene significantly widening the thermal operating window of oxide thermoelectrics. This work was followed up with a collaboration with a UK manufacturer, ETL Ltd, through an Innovate-EPSRC grant. We have also developed new graphene-based energy storage materials, with an industrial project now with Petronas.
First Year Of Impact 2012
Sector Aerospace, Defence and Marine,Chemicals,Electronics,Energy,Manufacturing, including Industrial Biotechology,Transport
Impact Types Economic

 
Description Controlling electrical percolation in hybrid thermoplastic composites through informed selection of fillers "HybridPercComp"(HPC)
Amount £276,427 (GBP)
Organisation Dutch Polymer Institute (DPI) 
Sector Public
Country Netherlands
Start 07/2018 
End 06/2022
 
Description GraphTED - graphene nanocomposite materials for thermoelectric devices
Amount £99,467 (GBP)
Funding ID EP/M50774X/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 04/2015 
End 03/2016
 
Description Graphene Flagship
Amount £470,000 (GBP)
Funding ID 604391 
Organisation European Commission 
Sector Public
Country European Union (EU)
Start 04/2016 
End 03/2017
 
Description Graphene-based disrputive technologies (H2020 Graphene Flagship Core 3)
Amount £643,000 (GBP)
Organisation European Commission H2020 
Sector Public
Country Belgium
Start 04/2020 
End 03/2022
 
Description HI-IMPERATIVE (Highly Innovative Thermally Conductive Materials for Power-Electronics Applications in EV)
Amount £385,051 (GBP)
Funding ID 10004716 
Organisation Innovate UK 
Sector Public
Country United Kingdom
Start 06/2021 
End 12/2022
 
Description RAEng/Morgan Advanced Materials Chair in Carbon Materials
Amount £590,000 (GBP)
Organisation Royal Academy of Engineering 
Sector Charity/Non Profit
Country United Kingdom
Start 10/2018 
End 09/2023
 
Description Realising the Graphene Revolution
Amount £200,000 (ANG)
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 04/2015 
End 03/2016
 
Description Realising the Graphene Revolution
Amount £200,000 (GBP)
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 04/2015 
End 03/2016
 
Description University of Manchester
Amount £1,000,000 (GBP)
Organisation University of Manchester 
Department Innovation Group (UMI3)
Sector Private
Country United Kingdom
Start 10/2014 
End 12/2017
 
Title Supporting data for article "Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes" 
Description The relationship between structure and properties has been followed for different nanoscale forms of tungsten disulfide (2H-WS2) namely exfoliated monolayer and few-layer nanoplatelets, and nanotubes. The similarities and differences between these nanostructured materials have been examined using a combination of optical microscopy, scanning and high-resolution transmission electron microscopy (SEM and HRTEM) and atomic force microscopy (AFM). Photoluminescence (PL) and Raman spectroscopy have also been used to distinguish between monolayer and few-layer material. Strain induced phonon shifts have been followed from the changes in the positions of the A1g and E2g1 Raman bands during uniaxial deformation. This has been modelled for monolayer using density functional theory (DFT) with excellent agreement between the measured and predicted behaviour. It has been found that as the number of WS2 layers increases for few-layer crystals or nanotubes, the A1g mode hardens whereas the E2g1 mode softens. This is believed to be due to the A1g mode, which involves out of plane atomic movements, being constrained by the increasing number of WS2 layers whereas easy sliding reduces stress transfer to the individual layers for the E2g1 mode, involving only in-plane vibrations. This finding has enabled the anomalous phonon shift behaviour in earlier pressure measurements on WS2 to be resolved, as well as similar effects in other transition metal dichalcogenides, such as molybdenum disulfide (MoS2), to be explained. This dataset contains supporting data for the density functional theory calculations which were the part of this work carried out at the University of Bath.The two zipped files contain all the input files supplied to the Quantum Espresso package for the two cases of pure hydrostatic strain and pure shear strain. 
Type Of Material Database/Collection of data 
Year Produced 2016 
Provided To Others? Yes  
 
Title PRODUCTION OF GRAPHENE 
Description A method for the production of graphene and graphite nanoplatelet structures having a thickness of less than 100 nm in an electrochemical cell, wherein the cell comprises: (a) a negative electrode which is graphitic; (b) a positive electrode which may be graphitic or another material; and (c) an electrolyte which is ions in a solvent where the cations are organic ions and metal ions; and wherein the method comprises the step of passing a current through the cell. 
IP Reference WO2013132261 
Protection Patent application published
Year Protection Granted 2013
Licensed Commercial In Confidence
Impact A joint University of Manchester-Morgan Advanced Materials Project is currently running at the National Graphene Institute (NGI), to scale this production route and explore the applications of the graphene produced. The project is approximately £1m over two years and is funded jointly by Morgan and UMIP. The research team involves two embedded Morgan staff at the NGI.
 
Title THERMOELECTRIC MATERIALS AND DEVICES COMPRISING GRAPHENE 
Description Composite materials with thermoelectric properties and devices made from such materials are described. The thermoelectric composite material may comprise a metal oxide material and graphene or modified graphene. It has been found that the addition of graphene or modified graphene to thermoelectric metal oxide materials increases ZT. It has further been found that the ZT of the metal oxide becomes effective over a broader temperature range and at lower temperatures. 
IP Reference WO2014125292 
Protection Patent application published
Year Protection Granted 2014
Licensed No
Impact Follow-on funding with TSB Innovate to develop prototype with ETL Limited.
 
Description Generating power from waste heat: Hot stuff (The Economist) 
Form Of Engagement Activity A magazine, newsletter or online publication
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact Article in The Economist on our graphene-thermoelectric work, which increased awareness of both thermoelectrics and the benefits of incorporating graphene.
Year(s) Of Engagement Activity 2015
URL http://www.economist.com/news/science-and-technology/21660078-sprinkling-graphene-may-conjure-long-s...
 
Description Great British Railway Journeys (BBC2) 
Form Of Engagement Activity A broadcast e.g. TV/radio/film/podcast (other than news/press)
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact Informal interview and demonstration of the electrochemical exfoliation of graphene on the Great British Railway Journeys broadcast on BB2 on 10th January 2017 (Series 8, Episode 7).
Year(s) Of Engagement Activity 2017
URL http://www.bbc.co.uk/programmes/b088rpqh
 
Description UAV at the Farnborough Airshow. 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact A collaboration between UCLan, University of Manchester and Haydale opened
Year(s) Of Engagement Activity 2016