Massive MIMO wireless networks: Theory and methods

Lead Research Organisation: Queen Mary University of London
Department Name: Sch of Electronic Eng & Computer Science

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

Publications

10 25 50
 
Description We developed a novel direction of arrival (DOA)-aided channel estimation for hybrid millimeter wave (mmWave) massive MIMO system with the uniform planar array (UPA) at base station (BS). To explore the physical characteristics of antenna array in mmWave systems, the parameters of each channel path are decomposed into the DOA information and the
channel gain information. We first estimate the initial DOAs of each uplink path through the two dimensional discrete Fourier transform (2D-DFT), and enhance the estimation accuracy via the angle rotation technique. We then estimate the channel gain information using small amount of training resources, which significantly reduces the training overhead and the feedback cost. As millimeter wave massive MIMO is a potential candidate for 5G and beyond, these developed channel estimation schemes are highly useful for the future wireless communications.
Exploitation Route We planned to organize a workshop to disseminate the results to industries. Also, we are in the process of extending this wave from millimeter frequency band to THz communications.
Sectors Digital/Communication/Information Technologies (including Software)

 
Description Millimeter Wave Massive-MIMO is one of the main technologies for the capacity enhancement in ''5G and beyond'' cellular networks. Our findings in this project have been disseminated in numerous top IEEE journals and IEEE Flagship conferences and attracted the interest of non-academic industries. More specifically, we developed a novel direction of arrival (DOA)-aided channel estimation for hybrid millimeter wave (mmWave) massive MIMO system with the uniform planar array (UPA) at base station (BS). To explore the physical characteristics of antenna array in mmWave systems, the parameters of each channel path are decomposed into the DOA information and the channel gain information. We first estimate the initial DOAs of each uplink path through the two dimensional discrete Fourier transform (2D-DFT), and enhance the estimation accuracy via the angle rotation technique. We then estimate the channel gain information using small amount of training resources, which significantly reduces the training overhead and the feedback cost. Industries are now exploring millimeter wave band of 30-300 GHz for 6G. Hence, our findings of channel estimation in Millimeter Wave Massive MIMO system are highly useful and made non-academic industrial impact in the development of next generation 6G cellular networks.
First Year Of Impact 2018
Sector Digital/Communication/Information Technologies (including Software)
Impact Types Economic