National Facility for In Vivo MR Imaging of Human Tissue Microstructure

Lead Research Organisation: Cardiff University
Department Name: Sch of Psychology

Abstract

Magnetic Resonance Imaging (MRI) scanners are used throughout the world to image the human body in hospitals and for research. They are used to diagnose disease and to understand the workings of the healthy body. In clinical settings, MRI scanners most often collect images which show objects down to about 1 mm in size. These are useful for some diagnoses, but are unable to capture tissue properties at microscopic length scales (thousandths of a millimetre), at which important processes may occur, e.g. in the 'axons' (the cells forming connections between different brain areas), or in cells in vital organs, such as the liver or kidney. Such detailed examination usually requires a 'biopsy' to remove tissue which is then examined under a microscope. However, biopsies only look at a tiny sample of tissue and can be risky to collect, e.g. in the brain.

This project will develop MRI in new ways to quantify tissue structure at the microscopic scale. The principal method looks at how water molecules moving in the body are impeded by fine structure within the tissue. While diffusion MRI has existed for 30 years, current MRI machines restrict us to measuring only relatively large molecular movements. This blurs our picture of the tissue, prohibiting us from looking at important characteristics, such as the dimensions of individual cells, or the density or packing of nerve fibres.

The main factor that can sharpen the picture, by sensitising MRI to smaller molecular movements, is a substantial increase in magnetic field gradients. These gradients are controlled alterations in the magnetic field strength within the MRI scanner. We will partner with a scanner manufacturer to create a system that produces gradients about 7 times stronger than available on standard MRI machines. There is only one similar system anywhere else in the world (in the USA) and we therefore propose to establish a 'National Facility for the In Vivo Imaging of Tissue Microstructure' here in the UK, serving as a national hub for development and application of advanced microstructural imaging methods.

Our first scientific aim will be to achieve robust and reliable measurements. We will develop methods to reduced the impact of inevitable imperfections in the hardware, and the effects of the person moving during scanning. About 75% of the project will be spent developing novel engineering and physics methods to obtain the best possible measurements. The increased sensitivity will allow us to characterise tissue in a range of organs to an unprecedented level of detail. In the brain, the white matter is the 'wiring' that interconnects different regions and is affected in many diseases including dementia, Alzheimer's disease, schizophrenia, depression and multiple sclerosis. Measurements on standard hardware lack the ability to show exactly how white matter is affected by these diseases, but at the NMIF we will be able to distinguish any changes in the shape or size of the axons (the tube-like structures), from changes in the myelin (the fatty insulation layer that wraps around axons). This will allow us to make better predictions about the white matter's ability to carry information. In cancer, we aim to replace the tumour biopsy with advanced microstructural imaging, being able to quantify non-invasively cell size, and density. The ultimate goal is to provide earlier and more accurate diagnoses, more specific and better-targeted therapy, improved treatment monitoring and overall improved outcome for patients with a range of debilitating diseases.

The project will develop and benefit from academic and industrial research partnerships in the UK and internationally. There is great potential for application in drug development, a strong industrial sector in the UK, for the development and delivery of new and effective treatments. This project will help maintain the UK's longheld position at the the international forefront of neuroimaging research.

Planned Impact

Our proposal to establish the UK's National Microstructure Imaging Facility (NMIF) would benefit a wide range of stakeholders that can put to important uses new and more sensitive medical imaging tools.

Basic biological and clinical researchers would benefit from the non-invasive imaging tool that can be applied to living humans. It will allow them to address their research questions over the structure and function of the human body in a way that has only been possible previously with invasive sampling of tissue through biopsy. Longitudinal clinical studies become possible examining the fine structure of human organs as they develop, age and change with disease. This benefits researchers and clinicians focusing on, for example brain, heart, muscles, kidney, prostate, liver bone and bowel. The subsequent healthcare and economic benefits are, therefore, substantial. Diseases with a particularly high societal burden, including dementia and cancer, will be an early target for clinical translation and therefore rapid impact. Commonly, in cancer, tumour cells are organized differently with respect to normal healthy tissue. The techniques we develop within the NMIF will aim to detect such subtle microstructural changes, helping to diagnose cancer and monitor treatment response, allowing better therapeutic decisions to be made.

The new imaging methods developed at the NIMF will provide sensitive biomarkers of dementia in the brain promoting its early diagnosis and the improved stratification of patient groups. Perhaps more pressing is the need for tools to help understand the basic pathology of dementia in the living brain and therefore to drive the development and accelerated testing of new treatments. This potentially rapid impact is exemplified by our partnership with Acuitas Medical which aims to use the high-gradient system to identify dementia-related changes in microstructural columns within the brain.
We have already identified key industrial partnerships that will accelerate benefits to industry, particularly in the UK, focusing on the medical device and pharmaceutical industries. Renishaw will be working with us to model brain tissue structure and produce improved software tools for drug delivery neurosurgery. There is a pressing need for more sensitive and specific biomarkers in the pharmaceutical industry to reduce the costs of development by providing early signals of drug efficacy and allowing the most promising compounds to be taken forward in development as rapidly as possible. This will lead to more treatments to more patients more quickly. We will partner with GlaxoSmithKline, the UK's largest pharmaceutical company, on the NMIF project to develop imaging markers useful in drug development. The MR scanner manufacturers are likely to benefit by extending MRI into new territory and new clinical applications, setting a new standard for a future generation of clinical hardware. Magstim will exploit the NMIF to improve their coil designs and paradigms for brain stimulation. The benefits to medical device and pharmaceutical research are likely to be realized in the next 3-5 years with the initiation of early clinical trials. The wider benefits to routine measurements would naturally take longer to realise, typically 5+ years. In addition to the direct scientific benefits the NMIF and the associated research and industrial network will produce a professional training opportunity unparalleled in Europe producing highly skilled imaging methodologists to work in research and industry.

Finally, our proposal includes plans to engage with the UK art community to engage the public in our science. There are many beneficiaries to this, including the scientists themselves (gaining new insights through two-way interaction), the artists (gaining new inspiration for their work), the museums and art galleries that will host the travelling exhibition, and the public that attends the exhibitions.

Publications

10 25 50
 
Title "In Vitro" and "The Left Hemisphere" videos and printed artworks 
Description Two video files entitlted "In Vitro" and "The Left Hemisphere" were created by our commissioned artist Shardcore (funded by the EPSRC engagement grant) and projected onto the large screen in the CUBRIC Reception area during the Brain Night event held on 6th Dec 2018. The artist was inspired by the unseeable structures revealed through science and the beautiful artworks were created from a 100,000 fibre connectom dataset collected from the EPSRC-funded Connectom scanner. Six printed pieces of artwork around the two themes were also delivered to CUBRIC before Christmas 2018. 
Type Of Art Film/Video/Animation 
Year Produced 2018 
Impact The audience attending Brain Night, the public engagement event held in CUBRIC, were very much impressed with the artistic way that the microstructural MRI brain imaging data was presented through the art-science collaboration. 
URL https://www.youtube.com/watch?v=KUG8pC5W5_Y
 
Title A Fifth Oil Painting 
Description A fifth oil painting was further delivered by our commissioned artist Lee Wright in March 2019 which features diffusion MRI works. 
Type Of Art Artwork 
Year Produced 2019 
Impact During the whole process of developing his 5th painting, the artist Lee Wright worked closely with the leading PI of the EPSRC award Prof Derek Jones to see how best to present the diffusion MRI works in the artistic way. Inspired by the unique microstructural MRI imaging enabled by the Connectom scanner with ultra-strong gradients, and the discussions held with Prof Jones on how the much higher resolution images were generated by diffusion MRI, Lee created the fifth painting. The delivered artwork itself is the result of art-science collaboration, and it will better engage the public with the advanced research in the planned art exhibition and maximise the impact of the scientific research. 
 
Title Four oil paintings 
Description Four pieces of oil paintings were delivered before Christmas 2017 by one of our commissioned artists Lee Wright (funded by the EPSRC engagement award). 'Healthy and diseased human brains' were highlighted in the artworks. 
Type Of Art Artwork 
Year Produced 2017 
Impact The artworks were initially developed by the artist. The investigators on the EPSRC equipment award for the Connectom scanner were then consulted for feedback/input to the artwork, following which the artist refined and completed the artworks before Christmas 2017. Therefore, the delivered artwork itself was the result of art-science collaboration, the aim of which is to engage the public more with the advanced research and to maximise the impact of the scientific research. 
 
Title Lightbox with transparent digital Artsci work and oil/acrylic on canvas 
Description Our commissioned artist Penelope Rose Cowley on the EPSRC engagement grant has completed and delivered to us 6 pieces of artwork in August 2018, one of which is via a lightbox with transparent digital artsci work entitled "Illumunated Tractography", two are in the form of acrylic on canvas, entitled "Mindscape" and "Braintree", three are oil on canvas, entitled "The Magnet", "Behind My Face Coronal", and "Head Down Axial". 
Type Of Art Artwork 
Year Produced 2018 
Impact To create the artwork, the artist visited CUBRIC several times, sitting in the Connectom scanner lab, watching the researchers operating the scanner / monitoring the data acquisition based on the established protocols, and discussing with the researchers about the unique advantage of microstructural MRI imaging enabled by the Connectom scanner. The interaction with the scientists brought the artist inspiration for their artworks. The successful delivery of the artworks funded by EPSRC is itself a productive art-science collaboration which will maximise the research impact and better engage the public in the planned art exhibition. 
 
Title Planar tensor encoding data 
Description Diffusion-weighted images were acquired with 60 gradient directions for planar tensor encoding (PTE) on a 3T Connectom MR imaging system (Siemens Healthineers, Erlangen, Germany). Twenty axial slices with a voxel size of 4mm isotropic (given the strong signal attenuations investigated here, a low resolution of 4 mm isotropic was used) and a 64×64 matrix size, TE = 88 ms, TR = 3000 ms, were obtained for each individual. 
Type Of Art Image 
Year Produced 2020 
URL https://research.cardiff.ac.uk/converis/portal/detail/Dataset/100087604?auxfun=&lang=en_GB
 
Description The art-science collaboration 'New Signals' project was further developed during the reporting period. Investigators have been working on the 'visualisations' images which will be put into the exhibitions together with the delivered artworks. Galleries and museums have been contacted for suitable hosts to be identified for the exhibitions. Besides the collaborative working and communication via email and skype meetings, investigators and other researchers across the institutions held a NMIF meeting in February in London to advance the methods development and application of the microstructural MRI. Plans have been put in place to deliver the project culminating in the touring exhibitions at the different cities that the investigators are based in. In addition to the four oil paintings which were delivered before Christmas 2017 by one of our commissioned artists Lee Wright highlighting 'healthy and diseased human brains' via the artworks, Lee delivered to us in March 2019 his 5th painting featuring the diffusion MRI work, inspired by the unique advantage of microstructural MRI imaging enabled by the EPSRC-funded Connectom scanner and the discussions held with the leading PI, Prof Derek Jones.
Another commissioned artist Penelope Rose Cowley on the EPSRC engagement grant has completed and delivered to us six pieces of artwork in August 2018, one of which is via a lightbox with transparent digital artsci work entitled "Illumunated Tractography", two are in the form of acrylic on canvas, entitled "Mindscape" and "Braintree", three are oil on canvas, entitled "The Magnet", "Behind My Face Coronal", and "Head Down Axial".
Two video files entitlted "In Vitro" http://www.shardcore.org/shardpress/2019/02/27/in-vitro/ and "The Left Hemisphere" https://www.youtube.com/watch?v=KUG8pC5W5_Y were created by our commissioned artist Shardcore (funded by the EPSRC engagement grant) and projected onto the large screen in the CUBRIC Reception area during the Brain Night event held on 6th Dec 2018. The artist was inspired by the unseeable structures revealed through science and the artworks were created from a 100,000 fibre connectom dataset. Six printed pieces of artwork around the two themes were also delivered to CUBRIC before Christmas 2018. The audience attending this public engagement event were very much impressed with the artistic way that the microstructural MRI brain imaging data was presented through the art-science collaboration.
Besides the imaging data collected from the Connectom scanner, the interaction with the scientists brought the artists inspiration for their artworks. The successful delivery of the artworks funded by EPSRC is itself a productive art-science collaboration which will maximise the research impact and better engage the public in the forthcoming exhibition.
In terms of our strategic objective to establish a National Microstructural Imaging Facility (NMIF), we held our first NMIF conference on 31st January - 1st February 2017, show casing the facility - with 150+ international attendees, so we have started to promote and support the use of the NMIF for the UK EPS community and beyond to develop new methods for quantifying microstructure.
With CUBRIC researchers' efforts to get the Connectom scanner fully up and running in 2017-2018, this EPSRC funded equipment has acted as a catalyst for generation of grant applications, papers and abstracts submitted to conferences, such as the 25th, 26th and 27th Annual Scientific Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), a premier meeting for the MRI research, drawing attendees from all over the world.
Two applicants whose applications are based on the Connectom microstructural brain imaging study have successfully got through to the interview stage in November 2018 for the competitive Sir Henry Wellcome Fellowship scheme, with one successfully awarded: Matteo Mancini from Universities of Brighton and Sussex.
Two Marie Curie Individual Fellowship applications (with Cardiff University as the host institution) from Viljami Sairanen (University of Helsinki, Finland) and Simona Schiavi (University of Verona, Italy) are also based on the Connectom study.
CUBRIC scientists have been invited to be co-applicants/collaborators on the following four grants:
Collaborator on the grant to British Heart Foundation with PI from Imperial College London, focusing on cardiac microstructural imaging;
Co-applicant on the grant to Wellcome Trust with PI from University of Leeds, focusing on cardiac microstructural imaging;
Co-applicant on the grant to EPSRC with PI from University of Manchester, focusing on water exchange study;
Co-applicant on the grant with PI from Australian Catholic University - cognitive deficits associated with chemotherapy.
The Connectom was already the centrepiece to 3 international Fellowships (featured in the University newsletter) by Erika Raven (Marshall Sherfield Fellowship, USA), Maxime Chamberland (Canada), and Chantal Tax (Netherlands) who has recently been awarded an application for the Sir Henry Wellcome Fellowship scheme, project entitled "Making advanced characterisation of tissue microstructure clinically practical: a data-driven approach to efficient microstructural MRI".
We have developed collaborations on the EPSRC-funded Connectom study. Our UK collaborations include: Oxford, Manchester, Brighton and Sussex, Nottingham, UCL, KCL; Our international collaborations include: EPFL, Switzerland; Lund University, Sweden; Max Planck Institute, Leipzig Germany; CINR, Paris, France; Leiden University, Netherlands; Leuven University, Belgium; Champalimaud Centre for the Unknown, Portugal; New York University, USA; Australian Catholic University, Australia.
An audition slot on 9th March 2018 has been secured for the Automating Science Discovery Feasibility Studies EPSRC call. Relevant data from the new high-resolution scans by Connectom has been used for the Pitch. We took on the CD-MRI challenge data sharing initiative, where data collected on the EPSRC-funded scanner in Cardiff, formed the centrepiece to an international competition to harmonise data from different scanners.
On 14th March 2018, we hosted a " Connecting the Connectoms" meeting in CUBRIC with attendees from the Boston MGH Connectom team (U.S.) and Leipzig Connectom team (Germany) to discuss collaborative opportunities between the 3 sites.
Prof Derek Jones, Director of CUBRIC, has given a talk on Connectom entitled "New Windows on Brain Structure and Function" at the Siemens Lunch Symposium on 19th June 2018 during the 26th Annual Scientific Meeting of the ISMRM in Paris, reaching an audience of 4,000 to 4,500 people worldwide, https://www.healthcare.siemens.com/magnetic-resonance-imaging/magnetom-world/clinical-corner/clinical-talks/new-windows-on-brain-structure-and-function.html . The majority of the innovations were on the Connectom scanner, having been hugely supported by Dr Umesh Rudrapatna, the senior post-doctoral Research Associate (pledged as matched funding by Cardiff University in support of the EPSRC equipment grant) and resulting from both internal work and the collaborations listed above. As a direct result, Siemens Healthineers committed to putting a Siemens scientist permanently on site to work with the CUBRIC Connectom physicist. This includes a new venture, i.e. imaging 'below the neck' where Cardiff University will be the world's first site to explore these new applications.
Dr Umesh Rudrapatna, Dr Lars Mueller and CUBRIC research group, using spiral-EPI on the Connectom, have achieved unprecedentedly short echo times for human diffusion MRI, potentially providing sensitivity to myelin water diffusion. This required collaboration with Siemens, pulse-sequence development, and a new image reconstruction pipeline that corrects for B0 and gradient imperfection temporally (measured with the field camera) and spatially (gradient nonlinearities). This new sequence also allows us to probe contrast mechanisms in diffusion-weighted fMRI.
Substantial progress with development study on utilising Connectom scanner has been achieved by CUBRIC scientists with expertise in engineering and physics. Connectom scanner enables the most ambitious microstructural brain imaging study to be conducted as part of the WAND study http://www.cardiff.ac.uk/news/view/1286914-most-advanced-brain-imaging-study-in-wales . The Science Café programme featuring the WAND study was broadcast on 25th September 2018 on BBC Radio Wales - Prof Derek Jones, Dr Hannah Chandler and Dr John Evans from CUBRIC were interviewed in the programme, https://www.bbc.co.uk/programmes/m0000hq7.
In terms of engagement with industrial users, we have been working very closely with Siemens Healthineers to explore physical limitations of imaging under the neck, which has never been done on this type of scanner before. Siemens Healthineers has agreed to sponsor a PhD student doing research on microstructure in the prostate.
We have recruited one student Joshua McColl to the PhD studentship partly funded by Renishaw plc. and will be recruiting two more PhD students partly funded by GlaxoSmithKline (GSK) and Magstim Co Ltd respectively to carry out research on microstructural imaging technology. Due to the internal restructuring within GSK, the appointment of the PhD student has been delayed, but recent discussion has been held to reinvigorate this collaboration.
We have finalised the 'visualisations' images to be included in the art exhibition and sent them to print just before March 2020 COVID lock down. We got the publicity/information pack/promotion materials ready for the 'New Signals' art-science exhibition to be held in London on 23/04/2020, however, all planned exhibition activities were delayed to date by the COVID lock down and restrictions.
Exploitation Route Please refer to the continuous output of papers from this investment and follow-on funding that has all been leveraged by the investment
Sectors Digital/Communication/Information Technologies (including Software),Education,Healthcare,Manufacturing, including Industrial Biotechology,Culture, Heritage, Museums and Collections,Pharmaceuticals and Medical Biotechnology

 
Description We engaged with the BBC news to have a detailed 3 minute feature on the system on the main 6 pm and 10 pm bulletins (see https://vimeo.com/224202631), the BBC news website, and the feature was broadcast and taken up by news agencies around the world. This publicity clearly engaged the general public (based on number of enquiries received), raised their awareness of the Connectom scanner, following which they might volunteer to be the participants of the MRI physics development work. It has also provided additional inspiration for artists to produce the artwork and helped us with the delivery of the art-science collaboration project for better public engagement (all commissioned artworks delivered to us by March 2019). On 25th January 2018 BBC news, Dr Chantal Tax from CUBRIC talked with singer Charlotte Church about the Connectom scanner on the BBC http://www.bbc.co.uk/news/uk-wales-42805693. An actual picture of living brain connections taken by the Connetom scanner was included in the BBC news. In addition, the YouTube video about the Connectom scanner made by Tom Scott (and filmed by Paul Allen, School of Psychology) has just passed 228,350 views! Prof Derek Jones, Director of CUBRIC gave the lay talk in the video to raise the general public's awareness of the stunning images enabled by the Connectom scanner https://www.youtube.com/watch?v=diPiSHxfGyE&feature=youtu.be. The impressive number of YouTube hits showed the scale of engagement from the general public which maximised the impact of the methodological advances facilitated by the advanced facility. The EPSRC-funded Connectom scanner enables the most ambitious microstructural brain imaging study to be conducted in CUBRIC as part of the WAND (Welsh Advanced Neuroimaging Database) study http://www.cardiff.ac.uk/news/view/1286914-most-advanced-brain-imaging-study-in-wales . The Science Café programme featuring the WAND study was broadcast on 25th September 2018 on BBC Radio Wales - Prof Derek Jones, Dr Hannah Chandler and Dr John Evans from CUBRIC were interviewed in the programme, https://www.bbc.co.uk/programmes/m0000hq7. It reaches the general public audience who will know more about the microstructural MRI imaging enabled by the Connectom scanner and how to volunteer to participate in the WAND study including MRI scan session in the Connectom. As of 28th Feb 2020 79 participants have participated in the Connectom scan as part of their WAND study visit. COVID lock down and restrictions since March 2020 significantly delayed the human participants research conduction. As of 4th March 2021, a total of 94 participants (only 15 more participants in the reporting period) have participated in the Connectom scan as part of their WAND study visit.
Sector Communities and Social Services/Policy,Digital/Communication/Information Technologies (including Software),Education
Impact Types Cultural,Societal

 
Description Assessing Placental Structure and Function by Unified Fluid Mechanical Modelling and in-vivo MRI
Amount £1,124,021 (GBP)
Funding ID EP/V034537/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 07/2021 
End 07/2024
 
Description BaMBoo: Building a Meaningful Biomarker of Myelin
Amount £300,000 (GBP)
Funding ID 213722/Z/18/Z 
Organisation Wellcome Trust 
Sector Charity/Non Profit
Country United Kingdom
Start 04/2019 
End 03/2023
 
Description Characterising brain network differences during scene perception and memory in young adult APOE-e4 carriers: multi-modal imaging in ALSPAC
Amount £1,420,574 (GBP)
Funding ID MR/N01233X/1 
Organisation Medical Research Council (MRC) 
Sector Public
Country United Kingdom
Start 01/2017 
End 06/2021
 
Description Countering the curse of dimensionality in microstructural MRI
Amount € 250,000 (EUR)
Organisation NWO Rubicon Fellowship 
Sector Private
Country Netherlands
Start 02/2020 
End 02/2024
 
Description Diffusion-relaxometry in prostate using ultra-strong gradients
Amount £55,000 (GBP)
Organisation Siemens AG 
Department Siemens plc
Sector Private
Country United Kingdom
Start 10/2019 
End 09/2022
 
Description EPSRC Centre for Doctoral Training in Intelligent, Integrated Imaging In Healthcare (i4health)
Amount £6,034,274 (GBP)
Funding ID EP/S021930/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 09/2019 
End 03/2028
 
Description Enabling Clinical Decisions From Low-power MRI In Developing Nations Through Image Quality Transfer
Amount £1,035,545 (GBP)
Funding ID EP/R014019/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 02/2018 
End 01/2021
 
Description Enabling clinical decisions from low-power MRI in developing nations through image quality transfer
Amount £1,020,000 (GBP)
Funding ID EP/R014019/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 02/2018 
End 01/2021
 
Description Exploiting ultra-strong gradients in multi-modal MRI for comprehensive assessment of white matter microstructure in the living human brain
Amount £139,200 (GBP)
Organisation Netherlands Organisation for Scientific Research (NWO) 
Sector Public
Country Netherlands
Start 06/2017 
End 08/2020
 
Description Influence of Sleep on Human Brain Structure
Amount £250,000 (GBP)
Funding ID 209192/Z/17/Z 
Organisation Wellcome Trust 
Sector Charity/Non Profit
Country United Kingdom
Start 08/2018 
End 08/2022
 
Description JPND: Stratification of presymptomatic amyotrophic lateral sclerosis: the development of novel imaging biomarkers
Amount € 1,600,000 (EUR)
Funding ID MR/T046473/1 
Organisation JPND Research 
Sector Academic/University
Country Global
Start 07/2020 
End 07/2023
 
Description Making advanced characterisation of tissue microstructure clinically practical: a data-driven approach to efficient microstructural MRI
Amount £300,000 (GBP)
Funding ID 215944/Z/19/Z 
Organisation Wellcome Trust 
Sector Charity/Non Profit
Country United Kingdom
Start 08/2019 
End 08/2023
 
Description Mapping Neurodevelopmental Trajectories for Adult Psychiatric Disorder: ALSPAC-MRI-II
Amount £1,791,731 (GBP)
Funding ID MR/S003436/1 
Organisation Medical Research Council (MRC) 
Sector Public
Country United Kingdom
Start 03/2019 
End 02/2023
 
Description Microstructural Imaging Data Centre (MIDaC)
Amount £73,918 (GBP)
Funding ID ST/S00209X/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 11/2018 
End 08/2019
 
Description Microstructural Imaging Suite
Amount £1,000,000 (GBP)
Funding ID PR/cmf/19801 
Organisation The Wolfson Foundation 
Sector Charity/Non Profit
Country United Kingdom
Start 07/2014 
End 07/2019
 
Description New Horizons in Clinical Cardiac Diffusion Magnetic Resonance Imaging
Amount £1,766,596 (GBP)
Organisation Wellcome Trust 
Sector Charity/Non Profit
Country United Kingdom
Start 03/2020 
End 03/2024
 
Description OCEAN: One-stop-shop microstructure-sensitive perfusion/diffusion MRI: Application to vascular cognitive impairment
Amount £1,302,402 (GBP)
Funding ID EP/M006328/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 03/2015 
End 09/2018
 
Description Statistical reconstruction of histology data based on magnetic resonance imaging (HistoStat)
Amount £186,938 (GBP)
Funding ID BB/T011564/1 
Organisation Biotechnology and Biological Sciences Research Council (BBSRC) 
Sector Public
Country United Kingdom
Start 05/2020 
End 10/2020
 
Description Water Exchange in the Vasculature of the Brain (WEX-BRAIN)
Amount £86,059 (GBP)
Funding ID EP/S031375/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 11/2019 
End 10/2022
 
Description Wellcome Trust Strategic Award
Amount £4,953,467 (GBP)
Funding ID 104943/Z/14/Z 
Organisation Wellcome Trust 
Department Wellcome Trust Strategic Award
Sector Charity/Non Profit
Country United Kingdom
Start 07/2016 
End 06/2021
 
Title MICRA: Microstructural image compilation with repeated acquisitions 
Description This is a publically accessible data set collected on the scanner funded by this grant. The full details can be found in this paper: MICRA: Microstructural image compilation with repeated acquisitions Kristin Koller, Umesh Rudrapatna, Maxime Chamberland, Erika P Raven, Greg D Parker, Chantal M W Tax, Mark Drakesmith, Fabrizio Fasano, David Owen, Garin Hughes, Cyril Charron , C John Evans, Derek K Jones Neuroimage 2021 Jan 15;225:117406. PMID: 33045335 PMCID: PMC7779421 DOI: 10.1016/j.neuroimage.2020.117406 We have put this data set onto the Open Science Framework for the community to use it. 
Type Of Material Database/Collection of data 
Year Produced 2020 
Provided To Others? Yes  
Impact The data set has been downloaded by multiple investigators around the globe given its unique features, to establish reproducibility of pipelines. It was used recently in the international BrainHack 
URL https://osf.io/z3mkn/
 
Title Noninvasive quantification of axon radii using diffusion MRI 
Description Axon size plays a crucial role in determining conductance velocity and, consequently, in the the timing and synchronization of neural activation. Noninvasive measurement of axon radii could have significant impact on the understanding of healthy and diseased neural processes. However, until now, accurate axon radius mapping has eluded in vivo neuroimaging, mainly due to a lack of sensitivity of the MRI signal to micron-sized axons. Here, we show how -- when confounding factors such as extra-axonal water and axonal orientation dispersion are eliminated -- heavily diffusion-weighted MRI signals becomes sensitive to axon radii. However, diffusion MRI is only capable of estimating a single metric representing the entire axon radius distribution within a voxel that emphasizes the largest axons. Our findings, both in rodents and humans, enable noninvasive mapping of critical information on axon radii, as well as resolve the long-standing debate on whether axon radii can be quantified. 
Type Of Material Database/Collection of data 
Year Produced 2019 
Provided To Others? Yes  
URL http://datadryad.org/stash/dataset/doi:10.5061/dryad.4qrfj6q66
 
Description Estimating axial diffusivity in the NODDI model 
Organisation University of Oxford
Country United Kingdom 
Sector Academic/University 
PI Contribution We provided the data acquisition, data sets, and pre-processing and had extended discussions with the team at Oxford about the complexities of estimating axial diffusivity from the NODDI model
Collaborator Contribution This was a real team effort (see above) but Dr Amy Howard really led the writing of the paper.
Impact Estimating axial diffusivity in the NODDI model. Howard AF, Cottaar M, Drakesmith M, Fan Q, Huang SY, Jones DK, Lange FJ, Mollink J, Rudrapatna SU, Tian Q, Miller KL, Jbabdi S. Neuroimage. 2022 Nov 15;262:119535.
Start Year 2021
 
Description GSK 
Organisation GlaxoSmithKline (GSK)
Country Global 
Sector Private 
PI Contribution We made the 3TM Connectom MRI scanner available for research. We will recruit a PhD student to do the research funded by GSK studentship.
Collaborator Contribution GSK agreed to fund a 3 year PhD studentship to carry out research on microstructural imaging technology.
Impact GSK agreed to fund a 3 year PhD studentship to carry out research on microstructural imaging technology.
Start Year 2016
 
Description Laboratorio de Procesado de Imagen - CUBRIC 
Organisation University of Valladolid
Country Spain 
Sector Academic/University 
PI Contribution We collaborated on a number of projects, including strategies to denoise diffusion MRI data, identify reduced acquisition strategies for faster encoding of diffusion anisotropy, and to establish conditions under which a power law can describe the signal decay for different microstructural substrates and diffusion encoding wave-forms.
Collaborator Contribution Santiago made an extended visit to CUBRIC for face-to-face discussions on the above topics, and we have continued Zoom calls ever since. He has now sent a postdoc to spend 2 years with us, as a result of the ongoing collaboration
Impact Direction-averaged diffusion-weighted MRI signal using different axisymmetric B-tensor encoding schemes. Afzali M, Aja-Fernández S, Jones DK. Magn Reson Med. 2020 Sep;84(3):1579-1591. Apparent propagator anisotropy from single-shell diffusion MRI acquisitions. Aja-Fernández S, Tristán-Vega A, Jones DK. Magn Reson Med. 2021 May;85(5):2869-2881 On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge. De Luca A, Ianus A, Leemans A, Palombo M, Shemesh N, Zhang H, Alexander DC, Nilsson M, Froeling M, Biessels GJ, Zucchelli M, Frigo M, Albay E, Sedlar S, Alimi A, Deslauriers-Gauthier S, Deriche R, Fick R, Afzali M, Pieciak T, Bogusz F, Aja-Fernández S, Özarslan E, Jones DK, Chen H, Jin M, Zhang Z, Wang F, Nath V, Parvathaneni P, Morez J, Sijbers J, Jeurissen B, Fadnavis S, Endres S, Rokem A, Garyfallidis E, Sanchez I, Prchkovska V, Rodrigues P, Landman BA, Schilling KG. Neuroimage. 2021 Oct 15;240:118367 Anisotropy measure from three diffusion-encoding gradient directions. Aja-Fernández S, París G, Martín-Martín C, Jones DK, Tristán-Vega A. Magn Reson Imaging. 2022 May;88:38-43.
Start Year 2019
 
Description Maastricht-Cardiff Collaboration for Implementation of MDT into CUBRIC Pipeline 
Organisation Maastricht University (UM)
Department Psychology Maastricht
Country Netherlands 
Sector Academic/University 
PI Contribution This was a collaboration with Robbert Harms at Maastricht University to implement his MDT toolbox into the CUBRIC pipeline for fitting of complex tissue microstructural models to diffusion MRI data. We established the acquisition protocols, sequences etc. and the theory to estimate conduction velocity from microstructural measurements. We worked together to get in vivo estimates of conduction velocity, that are now being used in subsequent papers and grant applications. This approach is now central to our current work in linking measures of functional connectivity (e.g. from MEG) to structural connectivity
Collaborator Contribution Robbert Harms worked with us, including extended visits to CUBRIC, to implement the Maastricht Diffusion Toolbox (MDT) into the CUBRIC pipeline to provide more robust fitting of advanced models so that we could extract reliable estimates of axon density, diameter and g-ratio. (Ref for prior work: Robust and fast nonlinear optimization of diffusion MRI microstructure models. Harms RL, Fritz FJ, Tobisch A, Goebel R, Roebroeck A. Neuroimage. 2017 Jul 15;155:82-96)
Impact Estimating axon conduction velocity in vivo from microstructural MRI. Drakesmith M, Harms R, Rudrapatna SU, Parker GD, Evans CJ, Jones DK. Neuroimage. 2019 Dec;203:116186.
Start Year 2018
 
Description Magstim Co Ltd 
Organisation The Magstim Company Limited
Country United Kingdom 
Sector Private 
PI Contribution We made the 3TM Connectom MRI scanner available for research. We will recruit a PhD student to do the research funded by Magstim studentship.
Collaborator Contribution Magstim agreed to fund a 3 year PhD studentship to carry out research on microstructural imaging technology.
Impact Magstim agreed to fund a 3 year PhD studentship to carry out research on microstructural imaging technology. We will recruit a PhD student to do the research funded by Magstim studentship.
Start Year 2016
 
Description Microscopic susceptibility anisotropy imaging 
Organisation University College London
Country United Kingdom 
Sector Academic/University 
PI Contribution This was a collaboration based on orientational effects, spherical averaging and diffusion MRI - following visits from Enrico Karen to CUBRIC to discuss with members of the WSA group about microstructure.
Collaborator Contribution The paper was predominantly written by the team at UCL, with Enrico Kaden and Naomi Gyori, with additional team conversations held with Mark Does at Vanderbilt University
Impact " - Microscopic susceptibility anisotropy imaging" https://pubmed.ncbi.nlm.nih.gov/32378746/
Start Year 2019
 
Description Multi-Dimensional Diffusion Prepped MR Fingerprinting 
Organisation Case Western Reserve University
Country United States 
Sector Academic/University 
PI Contribution This is a joint collaboration with the team at Case Western Reserve University (Dan Ma and Mark Griswold). They are the inventors of MR Fingerprinting (MRF), and had not incorporated multi-dimensional (b-tensor) encoding into the MRF pipeline. Our team in Cardiff contributed the diffusion MR expertise to implement, analyse, interpret and debug the multi-dimensional diffusion-prepped MRF approach. The Cardiff team identified the source of artefact (cardiac pulsation) and this has led to further collaborations (papers under review) to get dMRF working without external pulse gating. Moreover, the Case Western team are co-PIs on an MRC-funded grant (led by Derek Jones)
Collaborator Contribution As noted above, this was a team effort with face-to-face visits and many regular Zoom calls to implement a multi-dimensional diffusion encoding. We had input from Filip Szczepankiewicz at Lund University (on spherical tensor encoding). Dan Ma implemented the sequence first at Case Western and it was ported, via PulseSeq, to CUBRIC.
Impact MR Fingerprinting with b-Tensor Encoding for Simultaneous Quantification of Relaxation and Diffusion in a Single Scan. Afzali M, Mueller L, Sakaie K, Hu S, Chen Y, Szczepankiewicz F, Griswold MA, Jones DK, Ma D. Magn Reson Med. 2022 Nov;88(5):2043-2057.
Start Year 2020
 
Description Multi-Dimensional Diffusion Prepped MR Fingerprinting 
Organisation Lund University
Country Sweden 
Sector Academic/University 
PI Contribution This is a joint collaboration with the team at Case Western Reserve University (Dan Ma and Mark Griswold). They are the inventors of MR Fingerprinting (MRF), and had not incorporated multi-dimensional (b-tensor) encoding into the MRF pipeline. Our team in Cardiff contributed the diffusion MR expertise to implement, analyse, interpret and debug the multi-dimensional diffusion-prepped MRF approach. The Cardiff team identified the source of artefact (cardiac pulsation) and this has led to further collaborations (papers under review) to get dMRF working without external pulse gating. Moreover, the Case Western team are co-PIs on an MRC-funded grant (led by Derek Jones)
Collaborator Contribution As noted above, this was a team effort with face-to-face visits and many regular Zoom calls to implement a multi-dimensional diffusion encoding. We had input from Filip Szczepankiewicz at Lund University (on spherical tensor encoding). Dan Ma implemented the sequence first at Case Western and it was ported, via PulseSeq, to CUBRIC.
Impact MR Fingerprinting with b-Tensor Encoding for Simultaneous Quantification of Relaxation and Diffusion in a Single Scan. Afzali M, Mueller L, Sakaie K, Hu S, Chen Y, Szczepankiewicz F, Griswold MA, Jones DK, Ma D. Magn Reson Med. 2022 Nov;88(5):2043-2057.
Start Year 2020
 
Description Nonivasive quantification of axon radii using diffusion MRI 
Organisation Champalimaud Foundation
Department Champalimaud Centre for the Unknown
Country Portugal 
Sector Academic/University 
PI Contribution This has been a large group effort to gain better estimates of axon diameter than the method we originally proposed in the Wellcome Strategic Award proposal (based on AxCaliber / AxCaliber3D). The initial project/collaboration was just with New York University (Centre for Biomedical Imaging) to provide a demonstration of utilising ultra-strong gradients (on the CUBRIC Connectom scanner) to estimate axon diameter in the living human brain, exploiting deviations from a power-law relationship between signal and diffusion-weighting. Once this proof-of-principle was established (with histological validation with our partners in the Champalimaud Centre for the Unknown in Lisbon), we extended this work to include another Connectom scanner at the Max Planck Institute in Leipzig to establish inter- and intra-site reproducibility/ repeatability. We continue to collaborate with Jelle Veraart on a number of projects exploiting this way to estimate axon diameter.
Collaborator Contribution Team effort - as described above. The original theoretical approach to estimating the axon diameter from the deviation from the power law was led by the team (Jelle Veraart at NYU), and the histological validation by the team at Champalimaud (Noam Shemesh). The Leipzig team, in the second paper, implemented the protocols we developed in Cardiff - and data were shared to enable the cross-site comparisons.
Impact Nonivasive quantification of axon radii using diffusion MRI. Veraart J, Nunes D, Rudrapatna U, Fieremans E, Jones DK, Novikov DS, Shemesh N. Elife. 2020 Feb 12;9:e49855. The variability of MR axon radii estimates in the human white matter. Veraart J, Raven EP, Edwards LJ, Weiskopf N, Jones DK. Hum Brain Mapp. 2021 May;42(7):2201-2213
Start Year 2019
 
Description Nonivasive quantification of axon radii using diffusion MRI 
Organisation Max Planck Society
Department Max Plank Institute for Human Cognitive and Brain Sciences
Country Germany 
Sector Academic/University 
PI Contribution This has been a large group effort to gain better estimates of axon diameter than the method we originally proposed in the Wellcome Strategic Award proposal (based on AxCaliber / AxCaliber3D). The initial project/collaboration was just with New York University (Centre for Biomedical Imaging) to provide a demonstration of utilising ultra-strong gradients (on the CUBRIC Connectom scanner) to estimate axon diameter in the living human brain, exploiting deviations from a power-law relationship between signal and diffusion-weighting. Once this proof-of-principle was established (with histological validation with our partners in the Champalimaud Centre for the Unknown in Lisbon), we extended this work to include another Connectom scanner at the Max Planck Institute in Leipzig to establish inter- and intra-site reproducibility/ repeatability. We continue to collaborate with Jelle Veraart on a number of projects exploiting this way to estimate axon diameter.
Collaborator Contribution Team effort - as described above. The original theoretical approach to estimating the axon diameter from the deviation from the power law was led by the team (Jelle Veraart at NYU), and the histological validation by the team at Champalimaud (Noam Shemesh). The Leipzig team, in the second paper, implemented the protocols we developed in Cardiff - and data were shared to enable the cross-site comparisons.
Impact Nonivasive quantification of axon radii using diffusion MRI. Veraart J, Nunes D, Rudrapatna U, Fieremans E, Jones DK, Novikov DS, Shemesh N. Elife. 2020 Feb 12;9:e49855. The variability of MR axon radii estimates in the human white matter. Veraart J, Raven EP, Edwards LJ, Weiskopf N, Jones DK. Hum Brain Mapp. 2021 May;42(7):2201-2213
Start Year 2019
 
Description Nonivasive quantification of axon radii using diffusion MRI 
Organisation New York University
Country United States 
Sector Academic/University 
PI Contribution This has been a large group effort to gain better estimates of axon diameter than the method we originally proposed in the Wellcome Strategic Award proposal (based on AxCaliber / AxCaliber3D). The initial project/collaboration was just with New York University (Centre for Biomedical Imaging) to provide a demonstration of utilising ultra-strong gradients (on the CUBRIC Connectom scanner) to estimate axon diameter in the living human brain, exploiting deviations from a power-law relationship between signal and diffusion-weighting. Once this proof-of-principle was established (with histological validation with our partners in the Champalimaud Centre for the Unknown in Lisbon), we extended this work to include another Connectom scanner at the Max Planck Institute in Leipzig to establish inter- and intra-site reproducibility/ repeatability. We continue to collaborate with Jelle Veraart on a number of projects exploiting this way to estimate axon diameter.
Collaborator Contribution Team effort - as described above. The original theoretical approach to estimating the axon diameter from the deviation from the power law was led by the team (Jelle Veraart at NYU), and the histological validation by the team at Champalimaud (Noam Shemesh). The Leipzig team, in the second paper, implemented the protocols we developed in Cardiff - and data were shared to enable the cross-site comparisons.
Impact Nonivasive quantification of axon radii using diffusion MRI. Veraart J, Nunes D, Rudrapatna U, Fieremans E, Jones DK, Novikov DS, Shemesh N. Elife. 2020 Feb 12;9:e49855. The variability of MR axon radii estimates in the human white matter. Veraart J, Raven EP, Edwards LJ, Weiskopf N, Jones DK. Hum Brain Mapp. 2021 May;42(7):2201-2213
Start Year 2019
 
Description Renishaw Plc 
Organisation Renishaw PLC
Country United Kingdom 
Sector Private 
PI Contribution We have recruited one student Iain Majer to the PhD studentship. Iain, however, left the programme due to ill health. We are currently recruiting a replacement student.
Collaborator Contribution Renishaw provided the PhD CASE Studentship to fund the PhD research study to be carried out.
Impact Renishaw provided the PhD CASE Studentship to fund the PhD research study to be carried out.
Start Year 2016
 
Description Resolving degeneracy in diffusion MRI biophysical model parameter estimation 
Organisation University of Leeds
Country United Kingdom 
Sector Academic/University 
PI Contribution This was a team effort to explore how extending the dimensionality of the diffusion encoding space (from single axis Stejskal-Tanner to n-dimensional encoding) could ameliorate the challenge of model degeneracy. This is something that CUBRIC has looked at for some time, and (in a separate collaboration with Lund University, we have been looking at the relative benefits of spherical tensor encoding, planar tensor encoding etc.). This has sprung further work (e.g. Direction-averaged diffusion-weighted MRI signal using different axisymmetric B-tensor encoding schemes. Afzali M, Aja-Fernández S, Jones DK. Magn Reson Med. 2020 Sep;84(3):1579-1591. SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI. Afzali M, Nilsson M, Palombo M, Jones DK. Neuroimage. 2021 Aug 15;237:118183. Afzali M, Chatziantoniou C, Tax CMW, Jones DK. 2019. Comparison of different tensor encoding combinations in microstructural parameter estimation. Proc IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) pp. 1471-1474. Afzali M, Tax CMW, Chatziantoniou C, Jones DK. Comparison of different tensor encoding combinations in microstructural parameter estimation. International Society for Magnetic Resonance in Medicine, Montreal, 2019 - see: https://cds.ismrm.org/protected/19MProceedings/PDFfiles/0060.html
Collaborator Contribution As noted above, this was a productive collaboration where both sides contributed equally to discussion, analysis of simulations through a series of online conversations and face-to-face chats (in Leeds and Cardiff)
Impact Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding. Coelho S, Pozo JM, Jespersen SN, Jones DK, Frangi AF. Magn Reson Med. 2019 Jul;82(1):395-410
Start Year 2018
 
Description Robust Diffusion Kurtosis Imaging 
Organisation Aarhus University
Country Denmark 
Sector Academic/University 
PI Contribution This was a team effort to robustify the estimate of diffusion kurtosis. The first author (Rafael Henriques) came to Cardiff to collect data on our Connectom scanner and this lead to conversations about characterisation of non-Gaussian diffusion. We have collectively implemented double diffusion encoding on the Connectom with a view to characterising micro-kurtosis using correlation tensor imaging.
Collaborator Contribution As noted - this is a joint collaboration. Rafael Henriques (Champalimaud Centre for the Unknown) was the main 'hands on' driver of this work, and our collaborators in Aarhus University (Sune Jespersen) and New York University (Jelle Veraart) provided additional theoretical input. We will continue to work on the implementation of correlation tensor imaging together (with a recently made plan to extend to characterisation of the tumour microenvironment in prostate cancer).
Impact Toward more robust and reproducible diffusion kurtosis imaging. Henriques RN, Jespersen SN, Jones DK, Veraart J. Magn Reson Med. 2021 Sep;86(3):1600-1613.
Start Year 2020
 
Description Robust Diffusion Kurtosis Imaging 
Organisation Champalimaud Foundation
Department Champalimaud Centre for the Unknown
Country Portugal 
Sector Academic/University 
PI Contribution This was a team effort to robustify the estimate of diffusion kurtosis. The first author (Rafael Henriques) came to Cardiff to collect data on our Connectom scanner and this lead to conversations about characterisation of non-Gaussian diffusion. We have collectively implemented double diffusion encoding on the Connectom with a view to characterising micro-kurtosis using correlation tensor imaging.
Collaborator Contribution As noted - this is a joint collaboration. Rafael Henriques (Champalimaud Centre for the Unknown) was the main 'hands on' driver of this work, and our collaborators in Aarhus University (Sune Jespersen) and New York University (Jelle Veraart) provided additional theoretical input. We will continue to work on the implementation of correlation tensor imaging together (with a recently made plan to extend to characterisation of the tumour microenvironment in prostate cancer).
Impact Toward more robust and reproducible diffusion kurtosis imaging. Henriques RN, Jespersen SN, Jones DK, Veraart J. Magn Reson Med. 2021 Sep;86(3):1600-1613.
Start Year 2020
 
Description Robust Diffusion Kurtosis Imaging 
Organisation NYU Langone Medical Center
Country United States 
Sector Academic/University 
PI Contribution This was a team effort to robustify the estimate of diffusion kurtosis. The first author (Rafael Henriques) came to Cardiff to collect data on our Connectom scanner and this lead to conversations about characterisation of non-Gaussian diffusion. We have collectively implemented double diffusion encoding on the Connectom with a view to characterising micro-kurtosis using correlation tensor imaging.
Collaborator Contribution As noted - this is a joint collaboration. Rafael Henriques (Champalimaud Centre for the Unknown) was the main 'hands on' driver of this work, and our collaborators in Aarhus University (Sune Jespersen) and New York University (Jelle Veraart) provided additional theoretical input. We will continue to work on the implementation of correlation tensor imaging together (with a recently made plan to extend to characterisation of the tumour microenvironment in prostate cancer).
Impact Toward more robust and reproducible diffusion kurtosis imaging. Henriques RN, Jespersen SN, Jones DK, Veraart J. Magn Reson Med. 2021 Sep;86(3):1600-1613.
Start Year 2020
 
Description Scanner manufacturer Siemens 
Organisation Siemens Healthcare
Country Germany 
Sector Private 
PI Contribution We've been collaborating with Siemens on multiple aspects.
Collaborator Contribution Siemens are closely involved from the start to ensure correct installation and working of the 3TM scanner Connectom. They are keen to remain involved in its development.
Impact The 3TM Connectom MRI scanner has been delivered and installed in CUBRIC Centre. We have received a 64 channel head coil from Siemens for the Connectom scanner.
Start Year 2016
 
Description Spherical averaging of diffusion MRI signals with imperfect coverage of the unit sphere 
Organisation Linkoping University
Department Department of Biomedical Engineering (IMT)
Country Sweden 
Sector Academic/University 
PI Contribution This was a collaboration to identify the best and most robust way to estimate the spherical average of the diffusion-weighted MRI signal and coping with imperfect coverage of a unit-sphere. This was really an extended discussion with iterations between data collection in Cardiff, in silico simulations and visualisation of results. the paper on this topic was written by Maryam Afzali in Cardiff.
Collaborator Contribution The Linkoping team (Ozarslan and Knuttson) predominantly contributed on the theoretical side of the different analyses of encoding schemes. All parties were involved in analysis and interpretation of the data and reviewing the paper.
Impact Computing the orientational-average of diffusion-weighted MRI signals: a comparison of different techniques. Afzali M, Knutsson H, Özarslan E, Jones DK. Sci Rep. 2021 Jul 12;11(1):14345.
Start Year 2020
 
Description TracInnovations 
Organisation TracInnovations ApS
Country Denmark 
Sector Private 
PI Contribution TracInnovations makes an markerless optical tracking system for prospective/retrospective motion correction in the MRI scanner (see: https://tracinnovations.com/) The EPSRC equipment grant includes provision for an optical tracking system. While we originally intended to purchase another system (from Kineticor), the TracInnovations solution appears optimal. However, the challenge is that the system was developed for another MRI scanner - and interfacing it into the Connectom scanner (funded by this grant) is challenging due to reduced field-of-view afforded by the RF hardware, and due to the smaller bore of the scanner. We have therefore committed to explore ways in which we can develop solutions (with the company) to get the system to work in the Connectom. This includes some preliminary work on an alternative system in CUBRIC (a 3T Prisma system)
Collaborator Contribution The company has agreed to hold regular (monthly) teleconferences with D. Jones, and to provide materials and spare parts to help develop solutions to this problem, with joint team meetings to review progress and results.
Impact None yet
Start Year 2020
 
Description Tract Specific Measurements 
Organisation Swiss Federal Institute of Technology in Lausanne (EPFL)
Country Switzerland 
Sector Public 
PI Contribution This has been an extended collaboration with the group at EPFL and team members that have moved on, where we exploit the power of the Connectom gradients in CUBRIC to obtain suppression of the extra-axonal signal (for intra-axonal T2 measurements), for robust estimates of axon diameter (for tract-specific axon diameter measurements). We have hosted Muhamed Barakovic, Simona Schiavi etc. - and have had extensive face-to-face and Zoom calls with various members of the team (some of which have moved on to University of Verona (Schiavi) and Basel (Barakovic), but we continue to collaborate
Collaborator Contribution Extended discussions - as noted above. Incoming lab visits and provided foreground 'know how' on the COMMIT framework which sits at the base of much of the collaboration.
Impact Resolving bundle-specific intra-axonal T2 values within a voxel using diffusion-relaxation tract-based estimation. Barakovic M, Tax CMW, Rudrapatna U, Chamberland M, Rafael-Patino J, Granziera C, Thiran JP, Daducci A, Canales-Rodríguez EJ, Jones DK. Neuroimage. 2021 Feb 15;227:117617. Measuring compartmental T2-orientational dependence in human brain white matter using a tiltable RF coil and diffusion-T2 correlation MRI. Tax CMW, Kleban E, Chamberland M, Barakovic M, Rudrapatna U, Jones DK. Neuroimage. 2021 Aug 1;236:117967. Bundle-Specific Axon Diameter Index as a New Contrast to Differentiate White Matter Tracts. Barakovic M, Girard G, Schiavi S, Romascano D, Descoteaux M, Granziera C, Jones DK, Innocenti GM, Thiran JP, Daducci A. Front Neurosci. 2021 Jun 15;15:646034. Bundle myelin fraction (BMF) mapping of different white matter connections using microstructure informed tractography. Schiavi S, Lu PJ, Weigel M, Lutti A, Jones DK, Kappos L, Granziera C, Daducci A. Neuroimage. 2022 Apr 1;249:118922.
Start Year 2020
 
Description Tract Specific Measurements 
Organisation University of Verona
Country Italy 
Sector Academic/University 
PI Contribution This has been an extended collaboration with the group at EPFL and team members that have moved on, where we exploit the power of the Connectom gradients in CUBRIC to obtain suppression of the extra-axonal signal (for intra-axonal T2 measurements), for robust estimates of axon diameter (for tract-specific axon diameter measurements). We have hosted Muhamed Barakovic, Simona Schiavi etc. - and have had extensive face-to-face and Zoom calls with various members of the team (some of which have moved on to University of Verona (Schiavi) and Basel (Barakovic), but we continue to collaborate
Collaborator Contribution Extended discussions - as noted above. Incoming lab visits and provided foreground 'know how' on the COMMIT framework which sits at the base of much of the collaboration.
Impact Resolving bundle-specific intra-axonal T2 values within a voxel using diffusion-relaxation tract-based estimation. Barakovic M, Tax CMW, Rudrapatna U, Chamberland M, Rafael-Patino J, Granziera C, Thiran JP, Daducci A, Canales-Rodríguez EJ, Jones DK. Neuroimage. 2021 Feb 15;227:117617. Measuring compartmental T2-orientational dependence in human brain white matter using a tiltable RF coil and diffusion-T2 correlation MRI. Tax CMW, Kleban E, Chamberland M, Barakovic M, Rudrapatna U, Jones DK. Neuroimage. 2021 Aug 1;236:117967. Bundle-Specific Axon Diameter Index as a New Contrast to Differentiate White Matter Tracts. Barakovic M, Girard G, Schiavi S, Romascano D, Descoteaux M, Granziera C, Jones DK, Innocenti GM, Thiran JP, Daducci A. Front Neurosci. 2021 Jun 15;15:646034. Bundle myelin fraction (BMF) mapping of different white matter connections using microstructure informed tractography. Schiavi S, Lu PJ, Weigel M, Lutti A, Jones DK, Kappos L, Granziera C, Daducci A. Neuroimage. 2022 Apr 1;249:118922.
Start Year 2020
 
Description Validating pore size estimates in a complex microfiber environment on a human MRI system 
Organisation East China Normal University (ECNU)
Country China 
Sector Academic/University 
PI Contribution We obtained the biomimetic phantoms, and oversaw the data collection and analysis - but this was really a team effort with colleagues from East China Normal University, National Yang Ming Chiao Tung University, Taipei, and University College London. The entire data collection / experiments were conducted in CUBRIC - hosting Chu-Chung Huang and Chin-Chin Hsu in CUBRIC for an extended visit to perform the validation
Collaborator Contribution Chu-Chung Huang and Chin-Chin Hsu were a key part of the MRI data acquisition and analysis for this collaboration, with Chu-Chung Huang leading the writing of the paper. Fenglei Zhou at UCL performed the electron-microscopy on the samples and did the analysis.
Impact Validating pore size estimates in a complex microfiber environment on a human MRI system. Huang CC, Hsu CH, Zhou FL, Kusmia S, Drakesmith M, Parker GJM, Lin CP, Jones DK. Magn Reson Med. 2021 Sep;86(3):1514-1530.
Start Year 2019
 
Description Validating pore size estimates in a complex microfiber environment on a human MRI system 
Organisation National Yang Ming University
Country Taiwan, Province of China 
Sector Academic/University 
PI Contribution We obtained the biomimetic phantoms, and oversaw the data collection and analysis - but this was really a team effort with colleagues from East China Normal University, National Yang Ming Chiao Tung University, Taipei, and University College London. The entire data collection / experiments were conducted in CUBRIC - hosting Chu-Chung Huang and Chin-Chin Hsu in CUBRIC for an extended visit to perform the validation
Collaborator Contribution Chu-Chung Huang and Chin-Chin Hsu were a key part of the MRI data acquisition and analysis for this collaboration, with Chu-Chung Huang leading the writing of the paper. Fenglei Zhou at UCL performed the electron-microscopy on the samples and did the analysis.
Impact Validating pore size estimates in a complex microfiber environment on a human MRI system. Huang CC, Hsu CH, Zhou FL, Kusmia S, Drakesmith M, Parker GJM, Lin CP, Jones DK. Magn Reson Med. 2021 Sep;86(3):1514-1530.
Start Year 2019
 
Description Validating pore size estimates in a complex microfiber environment on a human MRI system 
Organisation University College London
Country United Kingdom 
Sector Academic/University 
PI Contribution We obtained the biomimetic phantoms, and oversaw the data collection and analysis - but this was really a team effort with colleagues from East China Normal University, National Yang Ming Chiao Tung University, Taipei, and University College London. The entire data collection / experiments were conducted in CUBRIC - hosting Chu-Chung Huang and Chin-Chin Hsu in CUBRIC for an extended visit to perform the validation
Collaborator Contribution Chu-Chung Huang and Chin-Chin Hsu were a key part of the MRI data acquisition and analysis for this collaboration, with Chu-Chung Huang leading the writing of the paper. Fenglei Zhou at UCL performed the electron-microscopy on the samples and did the analysis.
Impact Validating pore size estimates in a complex microfiber environment on a human MRI system. Huang CC, Hsu CH, Zhou FL, Kusmia S, Drakesmith M, Parker GJM, Lin CP, Jones DK. Magn Reson Med. 2021 Sep;86(3):1514-1530.
Start Year 2019
 
Title SYSTEM AND METHOD FOR MAGNETIC RESONANCE FINGERPRINTING WITH RELAXATION AND DIFFUSION DATA ACQUISITION 
Description A method for multi-dimensional, relaxation-diffusion magnetic resonance fingerprinting (MRF) includes performing, using a magnetic resonance imaging (MRI) system, a pulse sequence that integrates free-waveform b-tensor diffusion encoding into a magnet resonance fingerprinting pulse sequence to perform a multi-dimensional, relaxation-diffusion encoding while acquiring MRF signal evolutions, processing, using a processor, the acquired MRF signal evolutions to determine at least one relaxation parameter and at least one diffusivity parameter, and generating, using the processor, a report including at least one of the at least one relaxation parameter and the at least diffusivity parameter. 
IP Reference 17661736 
Protection Patent / Patent application
Year Protection Granted 2022
Licensed No
Impact None as yet. Follow-up papers that mean cardiac triggering is not needed are in the pipeline.
 
Title Implementation of FEXI sequence on Connectom 300 mT/m MRI system 
Description This is implementation of the filtered exchange imaging (FEXI) sequence that is critical to the WEX-BRAIN project (EP/S031510/1). This sub-project to Cardiff was explicitly to implement the sequence on the Siemens Connectom scanner, one of just four in the world, with ultra-strong (300 mT/m) gradients. The sequence had to be built from basics and a working prototype has been created. This is still under evaluation in collaboration with the main WEX-BRAIN partners at UCL (EP/S031510/1) 
Type Of Technology New/Improved Technique/Technology 
Year Produced 2021 
Impact None as yet - still under evaluation 
 
Description "Inside your Brain" - the Science Café programme featuring the WAND study 
Form Of Engagement Activity A broadcast e.g. TV/radio/film/podcast (other than news/press)
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact The Science Café programme "Inside your Brain" featuring the WAND (Welsh Advanced Neuroimaging Database) study was broadcast on 25th September 2018 on BBC Radio Wales - Prof Derek Jones, Dr Hannah Chandler and Dr John Evans from CUBRIC were interviewed in the programme, https://www.bbc.co.uk/programmes/m0000hq7. This promoted the WAND study to the general public, introduced the design of the study which included a session of the MRI scan in the EPSRC-funded Connectom scanner, and presented to the public the opportunity to participate in the study and how to contact the CUBRIC study team if they want to volunteer for it.
Year(s) Of Engagement Activity 2018
URL https://www.bbc.co.uk/programmes/m0000hq7
 
Description 27th Annual Scientific Meeting of the ISMRM, Montreal 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact We submitted abstracts to the Annual Scientific Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM). This is the premier international meeting for MRI research, drawing 6500-8000 attendees from all over the world. At the 27th Annual Scientific Meeting of the ISMRM (on 11-16 May 2019 in Montreal, Canada) CUBRIC researchers will give 6 oral presentations based on the accepted abstracts entitled "Comparison of different tensor encoding combinations in microstructural parameter estimation", "Metrics that Matter: Improved statistical power to detect differences in tissue microstructure through dimensionality reduction", "New insights into the development of white matter microstructure across childhood and adolescence from ultra-strong gradients", "Separating intra- and extra-axonal susceptibility effects using a Diffusion-Filtered Asymmetric Spin Echo (D-FASE) sequence", "Diffusion MRI with b=1000 s/mm2 at TE < 22 ms using single-shot spiral readout and ultra-strong gradients: Implications for microstructure imaging", "Characterizing diffusion of myelin water in the living human brain using ultra-strong gradients and spiral readout", and 2 power pitches entitled "Mapping axonal conduction velocities from in vivo MRI data", "A GRANDIOSE sequence to time-lock BOLD and diffusion-weighted fMRI contrasts in humans using ultra-strong gradients and spirals", as well as 6 digital posters, entitled "Characterising tissue heterogeneity in cerebral metastases using multi-shell multi-tissue constrained spherical deconvolution", "Powering Up Microstructural Imaging: assessing cross-metric and cross-tract statistical power on an ultra-strong gradient MRI system", "What are the consequences of ignoring non-Gaussian diffusion in models of convection-enhanced drug delivery to the human brain?", "Gradient profiles of myelin and microstructure metrics across the developing brain", "Can unprecedented echo times in human diffusion weighted fMRI help reveal its biological underpinnings?", "Tractography of complex white matter bundles: limitations of diffusion MRI data upsampling". Besides, based on the accepted abstracts on our collaborative work with others, 3 oral presentations will be given, entitled "Mapping of fibre-specific relaxation and diffusivities in heterogeneous brain tissue" (collaborating with Lund University), "Temporal Diffusion Ratio (TDR): A Diffusion MRI technique to map the fraction and spatial distribution of large axons in the living human brain" (collaborating with King's College London), "A Joint Recommendation for Optimized Preprocessing of Connectom Diffusion MRI Data" (collaborating with Max Planck Institute, Leipeig Germany & Harvard Medical School). One digital poster will also be presented, entitled "Double diffusion encoding enables unique parameter estimation of the Standard Model in diffusion MRI" (collaborating with University of Leeds). The results generated from the EPSRC funded 3TM Connectom scanner will be presented at the ISMRM to maximize the impact of research enabled by Connectom scanner. We will keep engaging the MR physics community and beyond through the biomedical MR conferences like the ISMRM.
Year(s) Of Engagement Activity 2018,2019
URL https://www.ismrm.org
 
Description A presentation at the ISMRM 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact We submitted the abstract entitled "Disentangling in two dimensions in the living human brain: Feasibilty of relaxometry diffusometry using ultra-strong gradients" by
Chantal MW Tax , Umesh S Rudrapatna , Thomas Witzel , and Derek K Jones and it was accepted for an oral presentation at the Annual Scientific Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM) on 22-28 April 2017. We intend to show our first results generated from 3TM scanner, and engage the MR physics community and beyond through the biomedical MR conferences like the ISMRM.
Year(s) Of Engagement Activity 2017
 
Description Academic collaborations arisen from the 'outreach' activities 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact We have initiated projects (with data collection) with: New York University (investigator = Jelle Veraart), Alicante (investigator = Silvia de Santis), University of Lund (investigator = Filip Szczepankiewiecz), University of Pavia (investigator = Giovanni Savini), University of Antwerp (investigator = Ben Jeurissen), University of Melbourne (investigator = Sila Genc), and with several UK Universities (Manchester University; Nottingham University; Swansea University; University College London). These academic collaborations have arisen from 'outreach' activities, including actively communicating with researchers who we believe could benefit from the enhanced capability of the system.
Year(s) Of Engagement Activity 2017,2018
 
Description An invited presentation (on behalf of Siemens Healthineers) entitled "New Windows on Brain Structure and Function" at the ISMRM in Paris 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact Prof Derek Jones, Director of CUBRIC, has given a talk on Connectom entitled "New Windows on Brain Structure and Function" at the Siemens Lunch Symposium on 19th June 2018 during the 26th Annual Scientific Meeting of the ISMRM in Paris, reaching an audience of 4,000 to 4,500 people worldwide, https://www.healthcare.siemens.com/magnetic-resonance-imaging/magnetom-world/clinical-corner/clinical-talks/new-windows-on-brain-structure-and-function.html . As a direct result, Siemens Healthineers committed to putting a Siemens scientist permanently on site to work with the CUBRIC Connectom physicist. This includes a new venture, i.e. imaging 'below the neck' where Cardiff University will be the world's first site to explore these new applications.
Year(s) Of Engagement Activity 2018
URL https://www.healthcare.siemens.com/magnetic-resonance-imaging/magnetom-world/clinical-corner/clinica...
 
Description BBC news release 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact We engaged with the BBC news to have a detailed 3 minute feature on the system on the main 6 pm and 10 pm bulletins (see https://vimeo.com/224202631), the BBC news website, and the feature was broadcast and taken up by news agencies around the world. This publicity clearly engaged the general public (based on number of enquiries received), raised their awareness of the Connectom scanner, following which they might volunteer to be the participants of the MRI physics development work. It will also provide additional inspiration for artists to produce the artwork and help us with the delivery of the art-science collaboration project for better public engagement.
Year(s) Of Engagement Activity 2017
URL https://vimeo.com/224202631
 
Description BBC visit 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Media (as a channel to the public)
Results and Impact The BBC is coming to visit CUBRIC Centre at the end of this month March 2017 - specifically to feature the National Microstructure Imaging Facility on the main news bulletin.
Year(s) Of Engagement Activity 2017
 
Description Brain Night - public engagement event 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact During the Brain Night event held on 6th December 2018 in CUBRIC, to better engage the members of the public, we uploaded the two video files containing the artworks created by our commissioned artist Shardcore (funded by the EPSRC engagement grant) onto the large screen in the Reception area. While talking with the audience about our neuroimaging research conducted in CUBRIC, we referred them to the large screen show to see how fascinating the imaging data collected from the Connectom scanner are - the beautiful artworks were created from a 100,000 fibre connectom dataset. The audience were very much impressed with the artistic way that the brain imaging data was presented through the art-science collaboration. Conducting MRI scans in the EPSRC-funded Connectom scanner is part of the WAND (Welsh Advanced Neuroimaging Database) study. We set up a WAND stand, promoting the study to the members of public and it was well received at this fun social occasion. More than 70 printouts of the Volunteer Information Sheets, Debriefing Form and Study Consent Form were all taken away by the audience after their chatting with the CUBRIC researchers. They showed genuine interest in the study and asked questions about the different scan sessions.
Year(s) Of Engagement Activity 2018
URL http://www.youtube.com/watch?v=tGRrAbkFViI
 
Description Chinese Radiological Society Annual Meeting, Hangzhou China 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited keynote at the Chinese radiological society meeting. Raising awareness of advanced microstructural imaging techniques. As a result, several people got in touch and asked about imaging with ultra-strong gradients.
Year(s) Of Engagement Activity 2013
 
Description Connectom scanner included in the BBC news 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact On 25th January 2018 BBC news, Dr Chantal Tax from CUBRIC talked with singer Charlotte Church about the Connectom scanner on the BBC http://www.bbc.co.uk/news/uk-wales-42805693. An actual picture of living brain connections taken by the Connetom scanner was included in the BBC news. It helped maximise the impact of the methodological advances facilitated by the advanced facility.
Year(s) Of Engagement Activity 2018
URL http://www.bbc.co.uk/news/uk-wales-42805693
 
Description First NMIF Conference 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact On 31st January - 1st February 2017, we held our first National Microstructural Imaging Facility (NMIF) conference, show casing the facility - with 150+ international attendees, and supported by the EPSRC grant.
Year(s) Of Engagement Activity 2017
 
Description Invited Keynote at the Annual Retreat of the Montreal Neurological Institute (MNI) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact This was the annual retreat of the McConnell Brain Imaging Centre at the Montreal Neurological Institute (MNI) where I was the sole keynote speaker and presented on our latest work in Tractometry. As a result, this led to new collaborations being formed with a core of physics colleagues (Christine Tardif, Ilana Lepert, Jennifer Campbell) to apply magnetization transfer-preparation to the diffusion read out for tract-specific MT measurements.
Year(s) Of Engagement Activity 2018
URL https://www.mcgill.ca/bic/retreat-2018
 
Description Invited opening talk at Gordon Research Conference on Tissue Microstructure Imaging, Mt Holyoke, Massachusetts 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact I was one of two invited opening speakers at the inaugural Gordon Research Conference on Tissue Microstructure Imaging with a talk entitled "New MRI Windows on White Matter Microstructure in the Living Human Brain". The Gordon Conferences are well known for their rigour and international standing. i presented our latest work and this led to many extended discussions (as is the format of the Gordon conferences) that have led to ongoing collaborations.
Year(s) Of Engagement Activity 2019
URL https://www.grc.org/tissue-microstructure-imaging-conference/2019/?elqTrackId=432e05ac9dc54881942444...
 
Description Invited presentation, International Society for Magnetic Resonance Technologists, Paris 2018 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact This was a talk to the world annual meeting of MRI Technologists/ Radiographers in Paris, explaining our latest developments and opportunities on the Connectom scanner in CUBRIC, and what ultra-strong gradients might provide.
Year(s) Of Engagement Activity 2018
URL https://www.ismrm.org/smrt/18m/
 
Description Oral Presentations, e-poster and power pitch at the 26th ISMRM 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact We submitted abstracts to the Annual Scientific Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM). This is the premier international meeting for MRI research, drawing 6500-8000 attendees from all over the world. At the 26th Annual Scientific Meeting of the ISMRM (on 16-21 June 2018 in Paris, France) CUBRIC researchers will be giving three oral presentations based on the accepted abstracts entitled " The Dot - Wherefore Art Thou? Search for the isotropic restricted diffusion compartment in the brain with spherical tensor encoding and strong gradients ", "Strategies for correcting gradient-nonlinearity effects in ultra-high gradient Diffusion MRI experiments", "Cross-vendor and Cross-protocol harmonisation of diffusion MRI data: a comparative study", one Power pitch entitled "What is the feasibility of estimating axonal conduction velocity from in vivo microstructural MRI?", and one e-poster entitled "the neurosurgical implication of scanner, gradient performance and acquisition protocol on Meyer's loop reconstruction". They will show our early results generated from 3TM Connectom scanner. Also, based on their accepted abstracts, Collaborators from New York University will be presenting one oral presentation entitled "Breaking the power law scaling of the dMRI signal on the Connectom scanner reveals its sensitivity to axon diameter" and one e-poster entitled "In vivo feasibility and reproducibility study on bundle-specific axon diameter mapping at 300mT/m" to maximize the impact of research enabled by Connectom scanner. We will keep engaging the MR physics community and beyond through the biomedical MR conferences like the ISMRM.
Year(s) Of Engagement Activity 2018
 
Description Public Understanding of Science in Health (PUSH) lecture series presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Schools
Results and Impact On 8th Feb 2018, as part of the Public Understanding of Science in Health (PUSH) lecture series, Prof Derek Jones from CUBRIC gave a presentation entitled 'Advances in Imaging the Human Brain: The CUBRIC Story'. The presentation was supported by a team from CUBRIC and included live presentations of fMRI and MEG (via video link back to CUBRIC), and EEG and TMS (in the lecture theatre). This public lecture was open to all, but was to encourage A-level students to consider STEM subjects for their careers.
Year(s) Of Engagement Activity 2018
 
Description Seminar on phantoms 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Professional Practitioners
Results and Impact On Monday 5th Feb 2018, Prof Geoff Parker, from University of Manchester gave us a seminar entitled "Biomimetic phantoms for microstructural imaging". The talk focused on the latest developments in microstructural imaging phantoms, and covered the methods of production of phantoms derived from a range of novel materials for diffusion MRI, designed to mimic white matter, grey matter and pathology including tumours and examples of their use for validation diffusion MRI methods and in multicentre studies. The talk was of interest and beneficial to researchers on microstructural imaging brain research.
Year(s) Of Engagement Activity 2018
 
Description YouTube video about the Connectom scanner 
Form Of Engagement Activity A broadcast e.g. TV/radio/film/podcast (other than news/press)
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact The YouTube video about the Connectom scanner made by Tom Scott (and filmed by Paul Allen, School of Psychology) has just passed 201,110 views! Prof Derek Jones, Director of CUBRIC gave the lay talk in the video to raise the general public's awareness of the stunning images enabled by the Connectom scanner. The impressive number of YouTube hits so far showed the scale of engagement from the general public which maximised the impact of the methodological advances facilitated by the advanced facility.
Year(s) Of Engagement Activity 2017,2018
URL https://www.youtube.com/watch?v=diPiSHxfGyE&feature=youtu.be