Enabling High-Speed Microwave and Millimetre Wave Links (MiMiWaveS)

Lead Research Organisation: King's College London
Department Name: Informatics

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
 
Description In 5G millimeter wave enabled communications, non-orthogonal multiple access (NOMA) scheme is a potential candidate to increase the capacity as well as for the grant free ultra reliable low latency communications (URLLC). Hence it is essential to analyze the system under different scenarios before the commercial implementation. Considered scenarios are cooperative NOMA with full-duplex (FD) and half-duplex (HD) schemes. Rigorous mathematical analysis have been done and verified by computer simulation. In 5G, network is mostly heterogeneous. Hence, resource allocation is challenging. Novel resource allocation design has been done for NOMA-enhanced heterogeneous networks (HetNets), where small cell base stations (SBSs) are enabled to communicate with multiple small cell users (SCUs) via the NOMA protocol. The resource allocation problem with the aim of maximizing the sum rate of SCUs is formulated as a many-to-one matching game. To solve this game, we developed a novel distributed algorithm where the SBSs and resource blocks (RBs) can interact to decide their desired allocation. Besides, we published an IEEE Proceeding overview article which is highly useful for academic as well as industrial researchers who work in NOMA area. We extended this work to millimeter wave enabled Unmanned aerial vehicles (UAV).
Exploitation Route We disseminated the results to academic and industrial researchers through international conferences/workshops.
Sectors Digital/Communication/Information Technologies (including Software),Education

 
Description Our findings in this project have been disseminated in numerous top IEEE journals and IEEE Flagship conferences and attracted the interest of non-academic industries. In 5G millimeter wave enabled communications, non-orthogonal multiple access (NOMA) scheme is a potential candidate to increase the capacity as well as for the grant free ultra reliable low latency communications (URLLC). Industries are specifically interested in analyzing the system under different scenarios before the commercial implementation. In this project, novel resource allocation design has been done for NOMA-enhanced heterogeneous networks and millimeter wave enabled Unmanned aerial vehicles (UAV). These findings received industrial attention and received industrial funding to procced further on millimeter wave enabled Multicell NOMA.
First Year Of Impact 2017
Sector Digital/Communication/Information Technologies (including Software),Education
Impact Types Societal,Economic