Emergent Nanomaterials (Critical Mass Proposal)
Lead Research Organisation:
University of Bath
Department Name: Chemistry
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Organisations
People |
ORCID iD |
| Stephen Parker (Principal Investigator) |
Publications
Allan N
(2021)
Energy landscapes of perfect and defective solids: from structure prediction to ion conduction
in Theoretical Chemistry Accounts
Bonkowski A
(2024)
A Single Model for the Thermodynamics and Kinetics of Metal Exsolution from Perovskite Oxides.
in Journal of the American Chemical Society
Calì E
(2023)
Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface
in Nature Communications
Flitcroft JM
(2019)
Impact of Hydrogen on the Intermediate Oxygen Clusters and Diffusion in Fluorite Structured UO2+ x.
in Inorganic chemistry
Irvine J
(2019)
Enhanced CO 2 Electrolysis at Redox Engineered Interfaces
in ECS Transactions
Khalid H
(2022)
Rapid Plasma Exsolution from an A-site Deficient Perovskite Oxide at Room Temperature
in Advanced Energy Materials
Shen Z
(2021)
Partially Anion-Ordered Cerium Niobium Oxynitride Perovskite Phase with a Small Band Gap
in Chemistry of Materials
Symington A
(2019)
The role of dopant segregation on the oxygen vacancy distribution and oxygen diffusion in CeO 2 grain boundaries *
in Journal of Physics: Energy
| Description | Exsolution is the process whereby a metal nanoparticle forms at the surface of a crystal hosts and produces a highly efficient catalytic nanoparticle with improved performance and resistance to coking. We are applying computer simulation techniques to better understand how catalytical metal nano-particles emerge from the host oxides is being achieved through our atomistic computer simulation. Most importantly, we have identified a few bottlenecks limiting the rate of this emergence using computer simulations and we have proposed possible methods to overcome them and accelerate the nano-particle growth. Specifically, we investigated the effect of external electrical fields, surface vacancy concentration and surface structure. We have confirmed that higher surface oxygen vacancy concentration will greatly enhance the nano-particle emergence and ease the condition and the availability of vacant cation sites at surface is essential to initiate the nucleation of socketed nanoparticles, which are proven via collaborations with our experimental partners in this Critical-Mass team. These confirmed understandings will allow the rational design of better metal nano-particles growth process via exsolution from host oxides with shorter time and lower cost. A second outcome has been the development of computational software and workflows for modelling structure and composition of surfaces and grain boundaries. These developments will now allow researchers to tackle more complex problems with a greater variety of dopants. |
| Exploitation Route | The original objectives to understand the mechanism of nano-particle exsolution within bulk and near-surface region are largely met. We have investigated exsolution elements including Fe, Ni, Cu, Ir, Mg combined with A-site elements including Ca, Sr, La. Our atomistic simulations showed that these exsolutions have similar exsolution paths but different exsolution barriers and exsolution driving forces depending on the ions' nominal charges. We have also revealed the early processes of particle nucleation at the host perovskite oxide surface via atomistic simulation, which is another original objective. The role of cation vacancies is identified to be critical for initial socketing, as the first step to particle nucleation, and the initial pairing of ions are elaborated using Ir as a case study. These theoretical findings go together with our experimental partners' high resolution in situ TEM results and substantiate each other. A resulting paper was published in Nat. Comm. Furthermore, by ensuring that key code developments are freely available and can be downloaded, we also aim to ensure that others can apply the computational techniques to these and other materials. One potential use is for high entropy materials. |
| Sectors | Energy |
| Title | Data for 'Grain boundary segregation and phase separation in ceria-zirconia from atomistic simulation' |
| Description | Data for the article 'Grain boundary segregation and phase separation in ceria-zirconia from atomistic simulation', including input and output files for simulations, and scripts to perform data analysis and generate figures. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2023 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/record/8414910 |
| Title | Data for 'Grain boundary segregation and phase separation in ceria-zirconia from atomistic simulation' |
| Description | Data for the article 'Grain boundary segregation and phase separation in ceria-zirconia from atomistic simulation', including input and output files for simulations, and scripts to perform data analysis and generate figures. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2023 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/record/8414909 |
| Title | Thermodynamic Evolution of Cerium Oxide Nanoparticle Morphology Using Carbon Dioxide Dataset |
| Description | Data supporting the publication "Thermodynamic Evolution of Cerium Oxide Nanoparticle Morphology Using Carbon Dioxide" DOI : 10.1021/acs.jpcc.0c07437 URL : https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c07437 Contained within are the the initial and final configurations from the VASP calculations. We used the Ce, O and C POTCAR. We used a KPOINT mesh of 2 x 2 x 1 An example INCAR has been include. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2020 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/record/4073024 |
| Title | Thermodynamic Evolution of Cerium Oxide Nanoparticle Morphology Using Carbon Dioxide Dataset |
| Description | Data supporting the publication "Thermodynamic Evolution of Cerium Oxide Nanoparticle Morphology Using Carbon Dioxide" DOI : 10.1021/acs.jpcc.0c07437 URL : https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c07437 Contained within are the the initial and final configurations from the VASP calculations. We used the Ce, O and C POTCAR. We used a KPOINT mesh of 2 x 2 x 1 An example INCAR has been include. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2020 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/record/4073025 |