A durable and scalable anti-soiling coating for solar modules

Lead Research Organisation: Loughborough University
Department Name: CREST

Abstract

The UK is committed to achieve net zero carbon emissions by 2050. This will require a massive shift in the way electricity is generated, away from burning fossil fuels and towards the use of renewable sources such as wind and solar. The cost of solar modules has reduced dramatically over the past few years and subsidy-free deployment is expanding rapidly, especially at utility scale. It is forecast that more than 40GW will be in use in the UK by 2030. Solar assets are financed by professional managers who are concerned by the ongoing operational costs of maintenance that affect power output and the return on investment. In particular, attention is being drawn to the problem of cover glass soiling that attenuates the light into the module. Soiling can reduce power output by up to 5% in the UK and is a far more serious problem (up to 50%) in arid sunbelt regions such as occur in India and the Middle East. Polymer-based hydrophobic anti-soiling coatings have been shown to work in principle, but their durability is not sufficient to withstand 24/7 exposure to environmental stresses or to abrasion damage caused by regular cleaning. The objective of this research is to develop and test a thin inorganic rare-earth oxide coating for application to solar cover glass. The hydrophobic coating will be low surface energy to reduce the adhesion to soiling. Its application will reduce the frequency of costly cleaning cycles. The coating will be capable of being applied at industrial scale using an Atmospheric Chemical Vapour Deposition process that is compatible with glass manufacturing. Use of the coating will significantly improve the practical power output of solar modules and will have worldwide impact.

Publications

10 25 50
 
Description National Renewable Energy Laboratory 
Organisation U.S. Department of Energy
Department National Renewable Energy Laboratory (NREL)
Country United States 
Sector Public 
PI Contribution National Renewable Energy Laboratory (NREL): NREL is a world leading Research Institution for Renewable Energy. NREL has hosted Nayia Arnou, Sona Ulcina and Luis Infante-Ortego (research students) from CREST for 3 month secondments. The visit by Sona Ulcina led to the development a 17.2% efficient perovskite solar cell using an atmospheric spray process. Several joint publications.
Collaborator Contribution Dr Tim Silverman, a senior scientist at NREL is currently on secondment to CREST for 1 year working on degradation mechanisms in silicon modules.
Impact Publications
Start Year 2014
 
Title COVER SHEET FOR PHOTOVOLTAIC PANEL 
Description A cover sheet (7) for a photovoltaic panel (4), the cover sheet (7) comprising a transparent substrate (8) and a coating (9) on the substrate (8), the coating (9) being such that the cover sheet (8) is more reflective to light of a first range of wavelengths in the infrared spectrum than to a second range of wavelengths in the visible spectrum; in which the coating (9) comprises alternating layers of first (11, 13) and second (12, 14) materials, with the first material (11, 13) having a higher refractive index than the second material (12, 14) and being a transparent conducting oxide such as indium tin oxide (ITO). Methods of manufacture including annealing the first material and/or depositing it at elevated temperatures are also discussed. 
IP Reference US2022077337 
Protection Patent / Patent application
Year Protection Granted 2022
Licensed No
Impact Discussions on licensing progressing
 
Description Visiting Professor Colorado State University 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Collaboration between Loughborough University and Colorado State University
Year(s) Of Engagement Activity 2020,2021,2022,2023