A Quantum Gas Microscope for the Kagome lattice

Lead Research Organisation: University of Cambridge
Department Name: Physics

Abstract

We propose to develop novel microscopy technique for optical lattices, and to build the first Quantum Gas Microscope for the Kagome lattice in order to study the rich physics of frustration, flat bands, and novel strongly-correlated states.
During the last twenty years, ultracold atoms in optical lattices have emerged as clean and versatile model systems to study the many-body physics of interacting particles in periodic potentials. In particular, Quantum Gas Microscopes enable the observation and manipulation of lattice gases with single-site resolution.
Strong geometric frustration can prevent ordering and give rise to extensive degeneracies that enable novel strongly correlated phenomena. The paradigmatic example is the Kagome lattice, where destructive interferences between hopping paths give rise to a perfectly flat band and non-trivial spin liquid states.
In this project, we will employ Mott insulators and negative temperature states as gateways into the flat band and explore the complex phase diagrams and non-equilibrium dynamics of bosons, fermions, and bose-fermi mixtures in the Kagome lattice.
We will develop a novel microscopy technique based on e.g. the sequential imaging of sublattices. This technique can be directly adapted to many other bichromatic superlattices, providing access to crucial local quantities including local densities, spin textures, density fluctuations, and spin correlations with single-site resolution.

Publications

10 25 50